扩散峰度数据的非刚性共配准

J. Veraart, W. Hecke, I. Blockx, A. Linden, M. Verhoye, Jan Sijbers
{"title":"扩散峰度数据的非刚性共配准","authors":"J. Veraart, W. Hecke, I. Blockx, A. Linden, M. Verhoye, Jan Sijbers","doi":"10.1109/ISBI.2010.5490326","DOIUrl":null,"url":null,"abstract":"Diffusion kurtosis imaging (DKI) is a relatively new model to study the non-Gaussian behavior of water diffusion in the brain white matter which introduces, besides the conventional diffusion tensor, a 4th order, 3D diffusion kurtosis tensor to describe the diffusion. In this study, a multi-component coregistration algorithm using a viscous fluid model and mutual information is optimized to enable more accurate alignment of the higher order tensor DKI data. The preservation of principle strategy is extended in order to facilitate tensor reorientation of the diffusion and diffusion kurtosis tensors. In addition, experiments demonstrated that involving kurtosis information in the coregistration procedure significantly improves tensor alignment.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-rigid coregistration of diffusion kurtosis data\",\"authors\":\"J. Veraart, W. Hecke, I. Blockx, A. Linden, M. Verhoye, Jan Sijbers\",\"doi\":\"10.1109/ISBI.2010.5490326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion kurtosis imaging (DKI) is a relatively new model to study the non-Gaussian behavior of water diffusion in the brain white matter which introduces, besides the conventional diffusion tensor, a 4th order, 3D diffusion kurtosis tensor to describe the diffusion. In this study, a multi-component coregistration algorithm using a viscous fluid model and mutual information is optimized to enable more accurate alignment of the higher order tensor DKI data. The preservation of principle strategy is extended in order to facilitate tensor reorientation of the diffusion and diffusion kurtosis tensors. In addition, experiments demonstrated that involving kurtosis information in the coregistration procedure significantly improves tensor alignment.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扩散峰度成像(Diffusion kurtosis imaging, DKI)是研究水在脑白质中的非高斯扩散行为的一种较新的模型,它在常规扩散张量的基础上,引入了四阶三维扩散峰度张量来描述水在脑白质中的扩散行为。在本研究中,优化了一种使用粘性流体模型和互信息的多分量共配算法,以实现更高阶张量DKI数据的更精确对准。为了便于扩散和扩散峰度张量的张量重定向,扩展了原则性的保留策略。此外,实验表明,在共配准过程中加入峰度信息可以显著改善张量对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-rigid coregistration of diffusion kurtosis data
Diffusion kurtosis imaging (DKI) is a relatively new model to study the non-Gaussian behavior of water diffusion in the brain white matter which introduces, besides the conventional diffusion tensor, a 4th order, 3D diffusion kurtosis tensor to describe the diffusion. In this study, a multi-component coregistration algorithm using a viscous fluid model and mutual information is optimized to enable more accurate alignment of the higher order tensor DKI data. The preservation of principle strategy is extended in order to facilitate tensor reorientation of the diffusion and diffusion kurtosis tensors. In addition, experiments demonstrated that involving kurtosis information in the coregistration procedure significantly improves tensor alignment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信