复合高斯杂波条件下MIMO雷达目标检测

M. Akçakaya, M. Hurtado, A. Nehorai
{"title":"复合高斯杂波条件下MIMO雷达目标检测","authors":"M. Akçakaya, M. Hurtado, A. Nehorai","doi":"10.1109/ACSSC.2008.5074393","DOIUrl":null,"url":null,"abstract":"Multiple-input multiple-output (MIMO) radars with widely-separated transmitters and receivers are useful to discriminate a target from clutter using the spatial diversity of the scatterers in the illuminated scene. We consider the detection of targets in compound-Gaussian clutter fitting for example scatterers with heavy-tailed distributions for high-resolution and/or low-grazing-angle radars in the presence of sea or foliage clutter. First, we introduce a data model using the inverse gamma distribution to represent the clutter texture. Then, we apply the parameter-expanded expectation-maximization (PX-EM) algorithm to estimate the clutter texture and speckle, as well as the target parameters.We develop a generalized likelihood ratio (GLR) test target detector using the estimates and show the advantages of MIMO using Monte Carlo simulations.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"MIMO radar detection of targets in compound-Gaussian clutter\",\"authors\":\"M. Akçakaya, M. Hurtado, A. Nehorai\",\"doi\":\"10.1109/ACSSC.2008.5074393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple-input multiple-output (MIMO) radars with widely-separated transmitters and receivers are useful to discriminate a target from clutter using the spatial diversity of the scatterers in the illuminated scene. We consider the detection of targets in compound-Gaussian clutter fitting for example scatterers with heavy-tailed distributions for high-resolution and/or low-grazing-angle radars in the presence of sea or foliage clutter. First, we introduce a data model using the inverse gamma distribution to represent the clutter texture. Then, we apply the parameter-expanded expectation-maximization (PX-EM) algorithm to estimate the clutter texture and speckle, as well as the target parameters.We develop a generalized likelihood ratio (GLR) test target detector using the estimates and show the advantages of MIMO using Monte Carlo simulations.\",\"PeriodicalId\":416114,\"journal\":{\"name\":\"2008 42nd Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 42nd Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2008.5074393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

多输入多输出(MIMO)雷达的发射机和接收机距离较远,可以利用照明场景中散射体的空间分异来区分目标和杂波。我们考虑在复合高斯杂波拟合中检测目标,例如高分辨率和/或低掠角雷达在海面或树叶杂波存在下的重尾分布散射体。首先,我们引入了一个用逆伽马分布来表示杂波纹理的数据模型。然后,我们应用参数扩展期望最大化(PX-EM)算法来估计杂波纹理和散斑以及目标参数。我们开发了一个广义似然比(GLR)测试目标检测器,并通过蒙特卡罗模拟展示了MIMO的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIMO radar detection of targets in compound-Gaussian clutter
Multiple-input multiple-output (MIMO) radars with widely-separated transmitters and receivers are useful to discriminate a target from clutter using the spatial diversity of the scatterers in the illuminated scene. We consider the detection of targets in compound-Gaussian clutter fitting for example scatterers with heavy-tailed distributions for high-resolution and/or low-grazing-angle radars in the presence of sea or foliage clutter. First, we introduce a data model using the inverse gamma distribution to represent the clutter texture. Then, we apply the parameter-expanded expectation-maximization (PX-EM) algorithm to estimate the clutter texture and speckle, as well as the target parameters.We develop a generalized likelihood ratio (GLR) test target detector using the estimates and show the advantages of MIMO using Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信