N. Reljin, Yelena Malyuta, Gary Zimmer, Y. Mendelson, D. Blehar, C. Darling, K. Chon
{"title":"支持向量机的脱水自动检测","authors":"N. Reljin, Yelena Malyuta, Gary Zimmer, Y. Mendelson, D. Blehar, C. Darling, K. Chon","doi":"10.1109/NEUREL.2018.8587008","DOIUrl":null,"url":null,"abstract":"There is a high demand for techniques that can detect dehydration automatically and accurately. In this study we collected photoplethysmographic (PPG) signals with miniature, wearable pulse oximeters from dehydrated patients being treated in the emergency department of tertiary care medical center. We used a set of features based on the variable frequency complex demodulation (VFCDM) to track changes in the amplitudes of the PPG recordings in the heart rate frequency range over time. These features were fed to support vector machines (SVM) with radial basis function (RBF) kernel for automatic classification. The optimal overall accuracy for classifying dehydration, sensitivity and specificity were 67.91%, 72.77% and 64.31% respectively. These results are promising, and suggest that automatic distinction between dehydration and rehydration is potentially possible even in clinical setting.","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Detection of Dehydration using Support Vector Machines\",\"authors\":\"N. Reljin, Yelena Malyuta, Gary Zimmer, Y. Mendelson, D. Blehar, C. Darling, K. Chon\",\"doi\":\"10.1109/NEUREL.2018.8587008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a high demand for techniques that can detect dehydration automatically and accurately. In this study we collected photoplethysmographic (PPG) signals with miniature, wearable pulse oximeters from dehydrated patients being treated in the emergency department of tertiary care medical center. We used a set of features based on the variable frequency complex demodulation (VFCDM) to track changes in the amplitudes of the PPG recordings in the heart rate frequency range over time. These features were fed to support vector machines (SVM) with radial basis function (RBF) kernel for automatic classification. The optimal overall accuracy for classifying dehydration, sensitivity and specificity were 67.91%, 72.77% and 64.31% respectively. These results are promising, and suggest that automatic distinction between dehydration and rehydration is potentially possible even in clinical setting.\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8587008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8587008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Detection of Dehydration using Support Vector Machines
There is a high demand for techniques that can detect dehydration automatically and accurately. In this study we collected photoplethysmographic (PPG) signals with miniature, wearable pulse oximeters from dehydrated patients being treated in the emergency department of tertiary care medical center. We used a set of features based on the variable frequency complex demodulation (VFCDM) to track changes in the amplitudes of the PPG recordings in the heart rate frequency range over time. These features were fed to support vector machines (SVM) with radial basis function (RBF) kernel for automatic classification. The optimal overall accuracy for classifying dehydration, sensitivity and specificity were 67.91%, 72.77% and 64.31% respectively. These results are promising, and suggest that automatic distinction between dehydration and rehydration is potentially possible even in clinical setting.