射电层析成像中的自适应椭圆权模型

Chunhua Zhu, Yue Chen
{"title":"射电层析成像中的自适应椭圆权模型","authors":"Chunhua Zhu, Yue Chen","doi":"10.1109/icvrv.2017.00084","DOIUrl":null,"url":null,"abstract":"In view of the problems that classical elliptic weight model in radio tomographic imaging leads to excessive pixels and noise interference, the role of elliptic weight model in image reconstruction is studied in this paper;an elliptic model with adaptive weight is proposed;simulation results show that the proposed algorithm can reduce pseudo position in reconstructed images and improve target positioning accuracy.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Elliptic Weights Model in Radio Tomographic Imaging\",\"authors\":\"Chunhua Zhu, Yue Chen\",\"doi\":\"10.1109/icvrv.2017.00084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the problems that classical elliptic weight model in radio tomographic imaging leads to excessive pixels and noise interference, the role of elliptic weight model in image reconstruction is studied in this paper;an elliptic model with adaptive weight is proposed;simulation results show that the proposed algorithm can reduce pseudo position in reconstructed images and improve target positioning accuracy.\",\"PeriodicalId\":187934,\"journal\":{\"name\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Virtual Reality and Visualization (ICVRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icvrv.2017.00084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icvrv.2017.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对射电层析成像中经典椭圆权值模型导致像素过多和噪声干扰的问题,本文研究了椭圆权值模型在图像重建中的作用,提出了一种自适应权值的椭圆模型,仿真结果表明,该算法可以减少重建图像中的伪位置,提高目标定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Elliptic Weights Model in Radio Tomographic Imaging
In view of the problems that classical elliptic weight model in radio tomographic imaging leads to excessive pixels and noise interference, the role of elliptic weight model in image reconstruction is studied in this paper;an elliptic model with adaptive weight is proposed;simulation results show that the proposed algorithm can reduce pseudo position in reconstructed images and improve target positioning accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信