{"title":"三维聚吡咯结构作为葡萄糖检测的传感材料","authors":"Karolina Cysewska, M. Szymańska, P. Jasiński","doi":"10.1117/12.2243855","DOIUrl":null,"url":null,"abstract":"In this work, 3D polypyrrole (PPy) structures as material for glucose detection is proposed. Polypyrrole was electrochemically polymerized on platinum screen-printed electrode from an aqueous solution of lithium perchlorate and pyrrole. The growth mechanism of such PPy structures was studied by ex-situ scanning electron microscopy. Preliminary studies show that studied here PPy film is a good candidate as a sensing material for glucose biosensor. It exhibits very high sensitivity (28.5 mA·mM-1·cm-2) and can work without any additional dopants, mediators or enzymes. It was also shown that glucose detection depends on the PPy morphology. The same PPy material was immobilized with the glucose oxidase enzyme. Such material exhibited higher signal response, however it lost its stability very fast.","PeriodicalId":101814,"journal":{"name":"Scientific Conference on Optical and Electronic Sensors","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D polypyrrole structures as a sensing material for glucose detection\",\"authors\":\"Karolina Cysewska, M. Szymańska, P. Jasiński\",\"doi\":\"10.1117/12.2243855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, 3D polypyrrole (PPy) structures as material for glucose detection is proposed. Polypyrrole was electrochemically polymerized on platinum screen-printed electrode from an aqueous solution of lithium perchlorate and pyrrole. The growth mechanism of such PPy structures was studied by ex-situ scanning electron microscopy. Preliminary studies show that studied here PPy film is a good candidate as a sensing material for glucose biosensor. It exhibits very high sensitivity (28.5 mA·mM-1·cm-2) and can work without any additional dopants, mediators or enzymes. It was also shown that glucose detection depends on the PPy morphology. The same PPy material was immobilized with the glucose oxidase enzyme. Such material exhibited higher signal response, however it lost its stability very fast.\",\"PeriodicalId\":101814,\"journal\":{\"name\":\"Scientific Conference on Optical and Electronic Sensors\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Conference on Optical and Electronic Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2243855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Conference on Optical and Electronic Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2243855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D polypyrrole structures as a sensing material for glucose detection
In this work, 3D polypyrrole (PPy) structures as material for glucose detection is proposed. Polypyrrole was electrochemically polymerized on platinum screen-printed electrode from an aqueous solution of lithium perchlorate and pyrrole. The growth mechanism of such PPy structures was studied by ex-situ scanning electron microscopy. Preliminary studies show that studied here PPy film is a good candidate as a sensing material for glucose biosensor. It exhibits very high sensitivity (28.5 mA·mM-1·cm-2) and can work without any additional dopants, mediators or enzymes. It was also shown that glucose detection depends on the PPy morphology. The same PPy material was immobilized with the glucose oxidase enzyme. Such material exhibited higher signal response, however it lost its stability very fast.