城市环境中的行人轨迹预测

M. Karimzadeh, Florian Gerber, Zhongliang Zhao, T. Braun
{"title":"城市环境中的行人轨迹预测","authors":"M. Karimzadeh, Florian Gerber, Zhongliang Zhao, T. Braun","doi":"10.1109/NetSys.2019.8854506","DOIUrl":null,"url":null,"abstract":"Increasing adoption of cellular phones equipped with global positioning system (GPS) chips enables the exploration of pedestrians' mobility patterns. Tasks such as discovering hot-spots in large cities can be addressed through the usage of accumulated GPS coordinates. In this work we utilize spatiotemporal analysis on collected geo-location points to discover Zone of Interests (ZOIs) of pedestrians in large cities to understand people's dynamics. We design an adaptive Markov model to forecast long distance trajectories of pedestrians, which adapts it's behavior constantly by switching from a first or second order Markov chain based on the quality of trace data and users' mobility patterns. From the predicted trajectories, we further introduce a mechanism to predict congested trajectories by estimating the number of pedestrians, who may take the same trajectory in a future moment. We conduct comprehensive empirical experiments using a real-life dataset, namely the Mobile Data Challenge (MDC) dataset with 185 participants. Our mechanisms can deliver a satisfactory pedestrian trajectory prediction with a precision of 86% and a recall of 84% .","PeriodicalId":291245,"journal":{"name":"2019 International Conference on Networked Systems (NetSys)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pedestrians Trajectory Prediction in Urban Environments\",\"authors\":\"M. Karimzadeh, Florian Gerber, Zhongliang Zhao, T. Braun\",\"doi\":\"10.1109/NetSys.2019.8854506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing adoption of cellular phones equipped with global positioning system (GPS) chips enables the exploration of pedestrians' mobility patterns. Tasks such as discovering hot-spots in large cities can be addressed through the usage of accumulated GPS coordinates. In this work we utilize spatiotemporal analysis on collected geo-location points to discover Zone of Interests (ZOIs) of pedestrians in large cities to understand people's dynamics. We design an adaptive Markov model to forecast long distance trajectories of pedestrians, which adapts it's behavior constantly by switching from a first or second order Markov chain based on the quality of trace data and users' mobility patterns. From the predicted trajectories, we further introduce a mechanism to predict congested trajectories by estimating the number of pedestrians, who may take the same trajectory in a future moment. We conduct comprehensive empirical experiments using a real-life dataset, namely the Mobile Data Challenge (MDC) dataset with 185 participants. Our mechanisms can deliver a satisfactory pedestrian trajectory prediction with a precision of 86% and a recall of 84% .\",\"PeriodicalId\":291245,\"journal\":{\"name\":\"2019 International Conference on Networked Systems (NetSys)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Networked Systems (NetSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NetSys.2019.8854506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Networked Systems (NetSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSys.2019.8854506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的人使用装有全球定位系统(GPS)芯片的移动电话,可以探索行人的移动模式。通过使用累积的GPS坐标,可以解决在大城市发现热点等任务。在这项工作中,我们利用收集的地理定位点的时空分析来发现大城市中行人的兴趣区(ZOIs),以了解人们的动态。我们设计了一个自适应马尔可夫模型来预测行人的长距离轨迹,该模型根据轨迹数据的质量和用户的移动模式,通过一阶或二阶马尔可夫链的切换来不断地调整其行为。在预测轨迹的基础上,我们进一步引入了一种通过估计行人数量来预测拥堵轨迹的机制,这些行人在未来时刻可能会走相同的轨迹。我们使用一个真实的数据集进行了全面的实证实验,即185名参与者的移动数据挑战(MDC)数据集。我们的机制可以提供令人满意的行人轨迹预测,精度为86%,召回率为84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrians Trajectory Prediction in Urban Environments
Increasing adoption of cellular phones equipped with global positioning system (GPS) chips enables the exploration of pedestrians' mobility patterns. Tasks such as discovering hot-spots in large cities can be addressed through the usage of accumulated GPS coordinates. In this work we utilize spatiotemporal analysis on collected geo-location points to discover Zone of Interests (ZOIs) of pedestrians in large cities to understand people's dynamics. We design an adaptive Markov model to forecast long distance trajectories of pedestrians, which adapts it's behavior constantly by switching from a first or second order Markov chain based on the quality of trace data and users' mobility patterns. From the predicted trajectories, we further introduce a mechanism to predict congested trajectories by estimating the number of pedestrians, who may take the same trajectory in a future moment. We conduct comprehensive empirical experiments using a real-life dataset, namely the Mobile Data Challenge (MDC) dataset with 185 participants. Our mechanisms can deliver a satisfactory pedestrian trajectory prediction with a precision of 86% and a recall of 84% .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信