J. E. Hadef, Sorin Olaru, P. Rodríguez-Ayerbe, G. Colin, Y. Chamaillard, Vincent Talon
{"title":"火花点火涡轮增压发动机气路的非线性显式预测控制","authors":"J. E. Hadef, Sorin Olaru, P. Rodríguez-Ayerbe, G. Colin, Y. Chamaillard, Vincent Talon","doi":"10.1109/CCA.2013.6662746","DOIUrl":null,"url":null,"abstract":"Pollutant emissions and fuel economy objectives have led car manufacturers to develop innovative and more sophisticated engine layouts. In order to reduce time-to-market and development costs, recent research has investigated the idea of a quasi-systematic engine control development approach. Model based approaches might not be the only possibility but they are clearly predetermined to considerably reduce test bench tuning work requirements. In this paper, we present the synthesis of a physics-based nonlinear model predictive control law especially designed for powertrain control. A binary search tree is used to ensure real-time implementation of the explicit form of the control law, computed by solving the associated multi-parametric nonlinear problem.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"121 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Explicit nonlinear model predictive control of the air path of a turbocharged spark-ignited engine\",\"authors\":\"J. E. Hadef, Sorin Olaru, P. Rodríguez-Ayerbe, G. Colin, Y. Chamaillard, Vincent Talon\",\"doi\":\"10.1109/CCA.2013.6662746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pollutant emissions and fuel economy objectives have led car manufacturers to develop innovative and more sophisticated engine layouts. In order to reduce time-to-market and development costs, recent research has investigated the idea of a quasi-systematic engine control development approach. Model based approaches might not be the only possibility but they are clearly predetermined to considerably reduce test bench tuning work requirements. In this paper, we present the synthesis of a physics-based nonlinear model predictive control law especially designed for powertrain control. A binary search tree is used to ensure real-time implementation of the explicit form of the control law, computed by solving the associated multi-parametric nonlinear problem.\",\"PeriodicalId\":379739,\"journal\":{\"name\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"121 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2013.6662746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Explicit nonlinear model predictive control of the air path of a turbocharged spark-ignited engine
Pollutant emissions and fuel economy objectives have led car manufacturers to develop innovative and more sophisticated engine layouts. In order to reduce time-to-market and development costs, recent research has investigated the idea of a quasi-systematic engine control development approach. Model based approaches might not be the only possibility but they are clearly predetermined to considerably reduce test bench tuning work requirements. In this paper, we present the synthesis of a physics-based nonlinear model predictive control law especially designed for powertrain control. A binary search tree is used to ensure real-time implementation of the explicit form of the control law, computed by solving the associated multi-parametric nonlinear problem.