扩展双线性状态空间模型的辨识

A. Schrempf, L. Re
{"title":"扩展双线性状态空间模型的辨识","authors":"A. Schrempf, L. Re","doi":"10.1109/CDC.2001.980572","DOIUrl":null,"url":null,"abstract":"An identification algorithm for a special model class which captures essential characteristics of many nonlinear systems is presented. Conditions are given under which this nonlinear model can be identified by use of efficient linear tools. Subspace identification is used to determine the linear part of the model and an initial estimate for the nonlinear one. The estimate of the nonlinear part is computed by a final numerical optimization step. A simulation study illustrates the applicability of the proposed method.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of extended bilinear state space models\",\"authors\":\"A. Schrempf, L. Re\",\"doi\":\"10.1109/CDC.2001.980572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An identification algorithm for a special model class which captures essential characteristics of many nonlinear systems is presented. Conditions are given under which this nonlinear model can be identified by use of efficient linear tools. Subspace identification is used to determine the linear part of the model and an initial estimate for the nonlinear one. The estimate of the nonlinear part is computed by a final numerical optimization step. A simulation study illustrates the applicability of the proposed method.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对一类特殊的模型类,提出了一种识别非线性系统本质特征的算法。给出了用有效的线性工具识别该非线性模型的条件。子空间识别用于确定模型的线性部分和非线性部分的初始估计。非线性部分的估计由最后的数值优化步骤计算。仿真研究表明了该方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of extended bilinear state space models
An identification algorithm for a special model class which captures essential characteristics of many nonlinear systems is presented. Conditions are given under which this nonlinear model can be identified by use of efficient linear tools. Subspace identification is used to determine the linear part of the model and an initial estimate for the nonlinear one. The estimate of the nonlinear part is computed by a final numerical optimization step. A simulation study illustrates the applicability of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信