配电系统模型标定中相位识别算法的参数整定分析

Bethany D. Peña, Logan Blakely, M. Reno
{"title":"配电系统模型标定中相位识别算法的参数整定分析","authors":"Bethany D. Peña, Logan Blakely, M. Reno","doi":"10.1109/kpec51835.2021.9446218","DOIUrl":null,"url":null,"abstract":"The recent growth of sensing devices on the distribution system, such as smart meter deployment, has enabled a wide variety of data-driven distribution system model calibration algorithms. A challenge associated with developing algorithms for model calibration tasks is the determination of parameters for a particular algorithm. This work proposes a method for parameter selection utilizing silhouette score analysis that allows these parameters to be tuned on a per-feeder basis. This method leverages cluster analysis and the distance matrices often produced by phase identification methods. The proposed method was tested on 5 feeders from 2 different utilities to select the number of clusters used in a spectral clustering phase identification algorithm. A synthetic dataset was then used to validate the method with the phase identification algorithm performing with 100% accuracy.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameter Tuning Analysis for Phase Identification Algorithms in Distribution System Model Calibration\",\"authors\":\"Bethany D. Peña, Logan Blakely, M. Reno\",\"doi\":\"10.1109/kpec51835.2021.9446218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent growth of sensing devices on the distribution system, such as smart meter deployment, has enabled a wide variety of data-driven distribution system model calibration algorithms. A challenge associated with developing algorithms for model calibration tasks is the determination of parameters for a particular algorithm. This work proposes a method for parameter selection utilizing silhouette score analysis that allows these parameters to be tuned on a per-feeder basis. This method leverages cluster analysis and the distance matrices often produced by phase identification methods. The proposed method was tested on 5 feeders from 2 different utilities to select the number of clusters used in a spectral clustering phase identification algorithm. A synthetic dataset was then used to validate the method with the phase identification algorithm performing with 100% accuracy.\",\"PeriodicalId\":392538,\"journal\":{\"name\":\"2021 IEEE Kansas Power and Energy Conference (KPEC)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Kansas Power and Energy Conference (KPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/kpec51835.2021.9446218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/kpec51835.2021.9446218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近在配电系统上的传感设备的增长,如智能电表的部署,使各种数据驱动的配电系统模型校准算法成为可能。与开发模型校准任务的算法相关的挑战是确定特定算法的参数。这项工作提出了一种利用轮廓评分分析进行参数选择的方法,该方法允许在每个馈线的基础上调整这些参数。该方法利用聚类分析和通常由相位识别方法产生的距离矩阵。该方法在2个不同电力公司的5个馈线上进行了测试,以选择光谱聚类相位识别算法中使用的聚类数量。然后使用合成数据集验证该方法,相位识别算法的准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter Tuning Analysis for Phase Identification Algorithms in Distribution System Model Calibration
The recent growth of sensing devices on the distribution system, such as smart meter deployment, has enabled a wide variety of data-driven distribution system model calibration algorithms. A challenge associated with developing algorithms for model calibration tasks is the determination of parameters for a particular algorithm. This work proposes a method for parameter selection utilizing silhouette score analysis that allows these parameters to be tuned on a per-feeder basis. This method leverages cluster analysis and the distance matrices often produced by phase identification methods. The proposed method was tested on 5 feeders from 2 different utilities to select the number of clusters used in a spectral clustering phase identification algorithm. A synthetic dataset was then used to validate the method with the phase identification algorithm performing with 100% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信