张量分解在商业建筑基线估计中的应用探讨

David Hong, Shunbo Lei, J. Mathieu, L. Balzano
{"title":"张量分解在商业建筑基线估计中的应用探讨","authors":"David Hong, Shunbo Lei, J. Mathieu, L. Balzano","doi":"10.1109/GlobalSIP45357.2019.8969417","DOIUrl":null,"url":null,"abstract":"Baseline estimation is a critical task for commercial buildings that participate in demand response programs and need to assess the impact of their strategies. The problem is to predict what the power profile would have been had the demand response event not taken place. This paper explores the use of tensor decomposition in baseline estimation. We apply the method to submetered fan power data from demand response experiments that were run to assess a fast demand response strategy expected to primarily impact the fans. Baselining this fan power data is critical for evaluating the results, but doing so presents new challenges not readily addressed by existing techniques designed primarily for baselining whole building electric loads. We find that tensor decomposition of the fan power data identifies components that capture both dominant daily patterns and demand response events, and that are generally more interpretable than those found by principal component analysis. We conclude by discussing how these components and related techniques can aid in developing new baseline models.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploration of tensor decomposition applied to commercial building baseline estimation\",\"authors\":\"David Hong, Shunbo Lei, J. Mathieu, L. Balzano\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Baseline estimation is a critical task for commercial buildings that participate in demand response programs and need to assess the impact of their strategies. The problem is to predict what the power profile would have been had the demand response event not taken place. This paper explores the use of tensor decomposition in baseline estimation. We apply the method to submetered fan power data from demand response experiments that were run to assess a fast demand response strategy expected to primarily impact the fans. Baselining this fan power data is critical for evaluating the results, but doing so presents new challenges not readily addressed by existing techniques designed primarily for baselining whole building electric loads. We find that tensor decomposition of the fan power data identifies components that capture both dominant daily patterns and demand response events, and that are generally more interpretable than those found by principal component analysis. We conclude by discussing how these components and related techniques can aid in developing new baseline models.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基线评估对于参与需求响应计划并需要评估其策略影响的商业建筑来说是一项关键任务。问题是,如果需求响应事件没有发生,如何预测电力分布。本文探讨了张量分解在基线估计中的应用。我们将该方法应用于需求响应实验中的亚计风扇功率数据,该实验旨在评估预计将主要影响风扇的快速需求响应策略。确定风机功率数据的基线对于评估结果至关重要,但这样做会带来新的挑战,而现有的技术主要用于确定整个建筑的电力负荷基线。我们发现,风扇功率数据的张量分解确定了捕获主要日常模式和需求响应事件的组件,并且通常比主成分分析发现的组件更具可解释性。最后,我们将讨论这些组件和相关技术如何帮助开发新的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of tensor decomposition applied to commercial building baseline estimation
Baseline estimation is a critical task for commercial buildings that participate in demand response programs and need to assess the impact of their strategies. The problem is to predict what the power profile would have been had the demand response event not taken place. This paper explores the use of tensor decomposition in baseline estimation. We apply the method to submetered fan power data from demand response experiments that were run to assess a fast demand response strategy expected to primarily impact the fans. Baselining this fan power data is critical for evaluating the results, but doing so presents new challenges not readily addressed by existing techniques designed primarily for baselining whole building electric loads. We find that tensor decomposition of the fan power data identifies components that capture both dominant daily patterns and demand response events, and that are generally more interpretable than those found by principal component analysis. We conclude by discussing how these components and related techniques can aid in developing new baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信