基于区域增长、区域竞争和Mumford - Shah泛函的自下而上图像分割方法

Yongsheng Pan, J. Birdwell, S. Djouadi
{"title":"基于区域增长、区域竞争和Mumford - Shah泛函的自下而上图像分割方法","authors":"Yongsheng Pan, J. Birdwell, S. Djouadi","doi":"10.1109/MMSP.2006.285327","DOIUrl":null,"url":null,"abstract":"Curve evolution implementations of the Mumford-Shah functional are of broad interest in image segmentation. These implementations, however, have initialization problems. A mathematical analysis of the initialization problem for the bi-modal Chan-Vese model is provided in this paper. The initialization problem is a result of the non-convexity of the Mumford-Shah functional and the top-down hierarchy of the model's use of global region information in the image. An efficient image segmentation method is proposed that alleviates the initialization problem, based on region growing, region competition and the Mumford Shah functional. This algorithm is able to automatically and efficiently segment objects in complicated images. Using a bottom-up hierarchy, the method avoids the initialization problem in the Chan-Vese model and works for images with multiple junctions and color images. It can be extended to textured images. Experimental results show that the proposed method is robust to the effects of noise","PeriodicalId":267577,"journal":{"name":"2006 IEEE Workshop on Multimedia Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Efficient Bottom-Up Image Segmentation Method Based on Region Growing, Region Competition and the Mumford Shah Functional\",\"authors\":\"Yongsheng Pan, J. Birdwell, S. Djouadi\",\"doi\":\"10.1109/MMSP.2006.285327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curve evolution implementations of the Mumford-Shah functional are of broad interest in image segmentation. These implementations, however, have initialization problems. A mathematical analysis of the initialization problem for the bi-modal Chan-Vese model is provided in this paper. The initialization problem is a result of the non-convexity of the Mumford-Shah functional and the top-down hierarchy of the model's use of global region information in the image. An efficient image segmentation method is proposed that alleviates the initialization problem, based on region growing, region competition and the Mumford Shah functional. This algorithm is able to automatically and efficiently segment objects in complicated images. Using a bottom-up hierarchy, the method avoids the initialization problem in the Chan-Vese model and works for images with multiple junctions and color images. It can be extended to textured images. Experimental results show that the proposed method is robust to the effects of noise\",\"PeriodicalId\":267577,\"journal\":{\"name\":\"2006 IEEE Workshop on Multimedia Signal Processing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Workshop on Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2006.285327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2006.285327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Mumford-Shah函数的曲线演化实现在图像分割中具有广泛的意义。然而,这些实现存在初始化问题。本文对双峰Chan-Vese模型的初始化问题进行了数学分析。初始化问题是由于Mumford-Shah函数的非凸性和模型在图像中使用全局区域信息的自上而下的层次结构造成的。提出了一种基于区域增长、区域竞争和Mumford Shah泛函的有效图像分割方法,缓解了初始化问题。该算法能够自动有效地分割复杂图像中的目标。该方法采用自底向上的层次结构,避免了Chan-Vese模型中的初始化问题,适用于多结点图像和彩色图像。它可以扩展到纹理图像。实验结果表明,该方法对噪声的影响具有较强的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Bottom-Up Image Segmentation Method Based on Region Growing, Region Competition and the Mumford Shah Functional
Curve evolution implementations of the Mumford-Shah functional are of broad interest in image segmentation. These implementations, however, have initialization problems. A mathematical analysis of the initialization problem for the bi-modal Chan-Vese model is provided in this paper. The initialization problem is a result of the non-convexity of the Mumford-Shah functional and the top-down hierarchy of the model's use of global region information in the image. An efficient image segmentation method is proposed that alleviates the initialization problem, based on region growing, region competition and the Mumford Shah functional. This algorithm is able to automatically and efficiently segment objects in complicated images. Using a bottom-up hierarchy, the method avoids the initialization problem in the Chan-Vese model and works for images with multiple junctions and color images. It can be extended to textured images. Experimental results show that the proposed method is robust to the effects of noise
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信