{"title":"考虑制造约束的风力机叶片气动设计","authors":"Nearchos Stylianidis, T. Macquart, A. Maheri","doi":"10.1109/EFEA.2014.7059984","DOIUrl":null,"url":null,"abstract":"The present paper investigates the aerodynamic design of wind turbine blades while considering manufacturing constraints. Blade topologies achieved by unconstrained optimisation methods are likely to lose optimality after manufacturing simplifications are applied. The present paper proposes and evaluates the performance of an optimisation method for wind turbine blades while considering manufacturing constraints. The optimal solution achieved this way is manufacturing-ready. In addition, integrating manufacturing design knowledge into the optimisation is shown to significantly reduce the design space, and therefore the time taken by the optimisation algorithm. While the proposed method herein is described for a standalone aerodynamic optimisation, it can also be used for aero-structural optimisations.","PeriodicalId":129568,"journal":{"name":"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aerodynamic design of wind turbine blades considering manufacturing constraints\",\"authors\":\"Nearchos Stylianidis, T. Macquart, A. Maheri\",\"doi\":\"10.1109/EFEA.2014.7059984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper investigates the aerodynamic design of wind turbine blades while considering manufacturing constraints. Blade topologies achieved by unconstrained optimisation methods are likely to lose optimality after manufacturing simplifications are applied. The present paper proposes and evaluates the performance of an optimisation method for wind turbine blades while considering manufacturing constraints. The optimal solution achieved this way is manufacturing-ready. In addition, integrating manufacturing design knowledge into the optimisation is shown to significantly reduce the design space, and therefore the time taken by the optimisation algorithm. While the proposed method herein is described for a standalone aerodynamic optimisation, it can also be used for aero-structural optimisations.\",\"PeriodicalId\":129568,\"journal\":{\"name\":\"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EFEA.2014.7059984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Environmental Friendly Energies and Applications (EFEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EFEA.2014.7059984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aerodynamic design of wind turbine blades considering manufacturing constraints
The present paper investigates the aerodynamic design of wind turbine blades while considering manufacturing constraints. Blade topologies achieved by unconstrained optimisation methods are likely to lose optimality after manufacturing simplifications are applied. The present paper proposes and evaluates the performance of an optimisation method for wind turbine blades while considering manufacturing constraints. The optimal solution achieved this way is manufacturing-ready. In addition, integrating manufacturing design knowledge into the optimisation is shown to significantly reduce the design space, and therefore the time taken by the optimisation algorithm. While the proposed method herein is described for a standalone aerodynamic optimisation, it can also be used for aero-structural optimisations.