特发性脊柱侧凸精确矫形干预的定量生物力学研究

Ruliang Feng, Huiren Tao, Canhua Ye, Guanglin Li, Xueling Bai, Lin Wang
{"title":"特发性脊柱侧凸精确矫形干预的定量生物力学研究","authors":"Ruliang Feng, Huiren Tao, Canhua Ye, Guanglin Li, Xueling Bai, Lin Wang","doi":"10.1109/RCAR54675.2022.9872188","DOIUrl":null,"url":null,"abstract":"The scoliosis with a prevalence of about 2.4% has become the top 3 major “killer” of children and adolescents’ health. Only 0.02% of scoliosis would be severe enough to require surgical intervention, while the rest was treated with orthotics or exercise training. However, the location of the orthotic forces and its effects were still not clear, resulting in a great deal of blindness in the fabrication of precise individualized orthoses and the later applied orthopedic forces. In this paper, we built a 3D spine model of a patient with idiopathic scoliosis based on CT tomography data, applied different orthopedic forces to the spine model to compare the results and clarify the relationship between them in order to determine the optimal location and magnitude of the orthopedic force, which were necessary for precise interventions in patients. The present results showed that 1) the greater the applied force, the better the correction effect (within reasonable limits) and 2) the effect of multiple forces applied for correction was better than that of a single force applied, as reflected by a greater displacement of the vertebrae and almost identical mean Von Mises stress in the discs, which could support the production of effective personalized orthopedic robots.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative biomechanical study for precise orthopedic intervention in idiopathic scoliosis\",\"authors\":\"Ruliang Feng, Huiren Tao, Canhua Ye, Guanglin Li, Xueling Bai, Lin Wang\",\"doi\":\"10.1109/RCAR54675.2022.9872188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scoliosis with a prevalence of about 2.4% has become the top 3 major “killer” of children and adolescents’ health. Only 0.02% of scoliosis would be severe enough to require surgical intervention, while the rest was treated with orthotics or exercise training. However, the location of the orthotic forces and its effects were still not clear, resulting in a great deal of blindness in the fabrication of precise individualized orthoses and the later applied orthopedic forces. In this paper, we built a 3D spine model of a patient with idiopathic scoliosis based on CT tomography data, applied different orthopedic forces to the spine model to compare the results and clarify the relationship between them in order to determine the optimal location and magnitude of the orthopedic force, which were necessary for precise interventions in patients. The present results showed that 1) the greater the applied force, the better the correction effect (within reasonable limits) and 2) the effect of multiple forces applied for correction was better than that of a single force applied, as reflected by a greater displacement of the vertebrae and almost identical mean Von Mises stress in the discs, which could support the production of effective personalized orthopedic robots.\",\"PeriodicalId\":304963,\"journal\":{\"name\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCAR54675.2022.9872188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊柱侧凸的患病率约为2.4%,已成为儿童青少年健康的前三大“杀手”。只有0.02%的脊柱侧凸严重到需要手术干预,而其余的则通过矫形器或运动训练进行治疗。然而,矫形力的位置和作用仍然不清楚,这给矫形器的精确个性化制作和矫形力的后期应用带来了很大的盲目性。本文基于CT断层扫描数据建立特发性脊柱侧凸患者的三维脊柱模型,对脊柱模型施加不同的矫形力,比较结果并明确两者之间的关系,从而确定矫形力的最佳位置和大小,为患者的精准干预提供必要依据。结果表明:1)施加力越大,矫正效果越好(在合理范围内);2)多施力矫正效果优于单施力,表现为椎骨位移更大,椎间盘平均Von Mises应力几乎相同,可支持生产有效的个性化骨科机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantitative biomechanical study for precise orthopedic intervention in idiopathic scoliosis
The scoliosis with a prevalence of about 2.4% has become the top 3 major “killer” of children and adolescents’ health. Only 0.02% of scoliosis would be severe enough to require surgical intervention, while the rest was treated with orthotics or exercise training. However, the location of the orthotic forces and its effects were still not clear, resulting in a great deal of blindness in the fabrication of precise individualized orthoses and the later applied orthopedic forces. In this paper, we built a 3D spine model of a patient with idiopathic scoliosis based on CT tomography data, applied different orthopedic forces to the spine model to compare the results and clarify the relationship between them in order to determine the optimal location and magnitude of the orthopedic force, which were necessary for precise interventions in patients. The present results showed that 1) the greater the applied force, the better the correction effect (within reasonable limits) and 2) the effect of multiple forces applied for correction was better than that of a single force applied, as reflected by a greater displacement of the vertebrae and almost identical mean Von Mises stress in the discs, which could support the production of effective personalized orthopedic robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信