{"title":"一类抛物型方程的非局部边界条件问题","authors":"L. A. Muravei, A. V. Filinovskii","doi":"10.1070/SM1993V074N01ABEH003345","DOIUrl":null,"url":null,"abstract":"Well-posed solvability is proved in an appropriate energy space of a boundary value problem with a nonlocal boundary condition for a one-dimensional parabolic equation; two-sided uniform estimates of the solution are obtained, which replace the maximum principle. The existence of an optimal control of the diffusion coefficient in the problem of minimizing the quality functional is established in the class of functions of bounded variation.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"ON A PROBLEM WITH NONLOCAL BOUNDARY CONDITION FOR A PARABOLIC EQUATION\",\"authors\":\"L. A. Muravei, A. V. Filinovskii\",\"doi\":\"10.1070/SM1993V074N01ABEH003345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well-posed solvability is proved in an appropriate energy space of a boundary value problem with a nonlocal boundary condition for a one-dimensional parabolic equation; two-sided uniform estimates of the solution are obtained, which replace the maximum principle. The existence of an optimal control of the diffusion coefficient in the problem of minimizing the quality functional is established in the class of functions of bounded variation.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1993V074N01ABEH003345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N01ABEH003345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON A PROBLEM WITH NONLOCAL BOUNDARY CONDITION FOR A PARABOLIC EQUATION
Well-posed solvability is proved in an appropriate energy space of a boundary value problem with a nonlocal boundary condition for a one-dimensional parabolic equation; two-sided uniform estimates of the solution are obtained, which replace the maximum principle. The existence of an optimal control of the diffusion coefficient in the problem of minimizing the quality functional is established in the class of functions of bounded variation.