安全地发现多元线性关系

Ningning Wu, Jing Zhang, Li Ning
{"title":"安全地发现多元线性关系","authors":"Ningning Wu, Jing Zhang, Li Ning","doi":"10.1109/IAW.2005.1495989","DOIUrl":null,"url":null,"abstract":"This paper considers the privacy-preserving cooperative linear system of equations (PPC-LSE) problem in a large, heterogeneous, distributed database scenario. It proposes a privacy-preserving algorithm to discover multivariate linear relationship based on factor analysis. Compared with other PPC-LSE algorithms, the proposed algorithm not only significantly reduces the communication cost, but also avoids the random matrix generation of either party to hide private information.","PeriodicalId":252208,"journal":{"name":"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discovering multivariate linear relationship securely\",\"authors\":\"Ningning Wu, Jing Zhang, Li Ning\",\"doi\":\"10.1109/IAW.2005.1495989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the privacy-preserving cooperative linear system of equations (PPC-LSE) problem in a large, heterogeneous, distributed database scenario. It proposes a privacy-preserving algorithm to discover multivariate linear relationship based on factor analysis. Compared with other PPC-LSE algorithms, the proposed algorithm not only significantly reduces the communication cost, but also avoids the random matrix generation of either party to hide private information.\",\"PeriodicalId\":252208,\"journal\":{\"name\":\"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAW.2005.1495989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAW.2005.1495989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了大型异构分布式数据库场景下的协作线性方程组(PPC-LSE)隐私保护问题。提出了一种基于因子分析的多元线性关系发现的隐私保护算法。与其他PPC-LSE算法相比,该算法不仅显著降低了通信成本,而且避免了任意一方生成随机矩阵来隐藏私有信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering multivariate linear relationship securely
This paper considers the privacy-preserving cooperative linear system of equations (PPC-LSE) problem in a large, heterogeneous, distributed database scenario. It proposes a privacy-preserving algorithm to discover multivariate linear relationship based on factor analysis. Compared with other PPC-LSE algorithms, the proposed algorithm not only significantly reduces the communication cost, but also avoids the random matrix generation of either party to hide private information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信