基于有限广义Dirichlet混合鲁棒建模的图像数据库分类

M. Ismail, H. Frigui
{"title":"基于有限广义Dirichlet混合鲁棒建模的图像数据库分类","authors":"M. Ismail, H. Frigui","doi":"10.1109/IPTA.2010.5586778","DOIUrl":null,"url":null,"abstract":"We propose a novel image database categorization approach using a possibilistic clustering algorithm. The proposed algorithm is based on a robust data modeling using the Generalized Dirichlet (GD) finite mixture and generates two types of membership degrees. The first one is a posterior probability that indicates the degree to which the point fits the estimated distribution. The second membership represents the degree of “typicality” and is used to indentify and discard noise points. The algorithm minimizes one objective function to optimize GD mixture parameters and possibilistic membership values. This optimization is done iteratively by dynamically updating the density mixture parameters and the membership values in each iteration. The performance of the proposed algorithm is illustrated by using it to categorize a collection of 500 color images. The results are compared with those obtained by the Fuzzy C-means algorithm.","PeriodicalId":236574,"journal":{"name":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image database categorization using robust modeling of finite Generalized Dirichlet mixture\",\"authors\":\"M. Ismail, H. Frigui\",\"doi\":\"10.1109/IPTA.2010.5586778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel image database categorization approach using a possibilistic clustering algorithm. The proposed algorithm is based on a robust data modeling using the Generalized Dirichlet (GD) finite mixture and generates two types of membership degrees. The first one is a posterior probability that indicates the degree to which the point fits the estimated distribution. The second membership represents the degree of “typicality” and is used to indentify and discard noise points. The algorithm minimizes one objective function to optimize GD mixture parameters and possibilistic membership values. This optimization is done iteratively by dynamically updating the density mixture parameters and the membership values in each iteration. The performance of the proposed algorithm is illustrated by using it to categorize a collection of 500 color images. The results are compared with those obtained by the Fuzzy C-means algorithm.\",\"PeriodicalId\":236574,\"journal\":{\"name\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Conference on Image Processing Theory, Tools and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2010.5586778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Conference on Image Processing Theory, Tools and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2010.5586778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于可能性聚类算法的图像数据库分类方法。该算法基于基于广义Dirichlet (GD)有限混合的稳健数据建模,并生成两种类型的隶属度。第一个是后验概率,表示点与估计分布的拟合程度。第二个隶属度表示“典型”的程度,用于识别和丢弃噪声点。该算法通过最小化一个目标函数来优化GD混合参数和可能隶属度值。这种优化是通过在每次迭代中动态更新密度混合参数和隶属度值来迭代完成的。通过对500张彩色图像进行分类,说明了该算法的性能。并与模糊c均值算法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image database categorization using robust modeling of finite Generalized Dirichlet mixture
We propose a novel image database categorization approach using a possibilistic clustering algorithm. The proposed algorithm is based on a robust data modeling using the Generalized Dirichlet (GD) finite mixture and generates two types of membership degrees. The first one is a posterior probability that indicates the degree to which the point fits the estimated distribution. The second membership represents the degree of “typicality” and is used to indentify and discard noise points. The algorithm minimizes one objective function to optimize GD mixture parameters and possibilistic membership values. This optimization is done iteratively by dynamically updating the density mixture parameters and the membership values in each iteration. The performance of the proposed algorithm is illustrated by using it to categorize a collection of 500 color images. The results are compared with those obtained by the Fuzzy C-means algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信