小波变换人工神经网络预测财务压力指数

Salim Sercan Sari
{"title":"小波变换人工神经网络预测财务压力指数","authors":"Salim Sercan Sari","doi":"10.23834/isrjournal.1159770","DOIUrl":null,"url":null,"abstract":"Finansal risk ve belirsizlikler nedeniyle karşılaşılan problemler dikkate alındığında, finansal stres endeksinin belirlenmesi büyük önem taşımaktadır. Çalışma ile makine öğrenmesi yöntemleri kullanılarak finansal stres endeksi seviyesinin tahmin edilmesi amaçlanmaktadır. Bu amaçla finansal stres endeksinin haftalık zaman serileri, bağımsız ve hibrit modeller kullanılarak incelenmiştir. Yapay sinir ağları, bağımsız makine öğrenme modelleri olarak kullanılırken, hibrit modeller oluşturmak için bir ön işleme tekniği olarak dalgacık dönüşümü kullanılmıştır. Ayrıca, finansal stres endeksi tahminlerinde, model doğruluklarını artırmak için otokorelasyon fonksiyonlarını kullanarak gecikme uzunlukları elde edilmiştir. Çalışmanın bulguları, çeşitli performans göstergeleri açısından değerlendirilmiştir. Finansal stres endeksinin tahmin edilmesinde dalgacık dönüşümlü yapay sinir ağları modelinin, yalın yapay sinir ağları modelinden daha iyi performans sergilediği tespit edilmiştir. Çalışma sonuçlarının finansal stres endeksini takip eden araştırmacı ve uygulayıcılar için fayda sağlayacağı düşünülmektedir.  ","PeriodicalId":274866,"journal":{"name":"The Journal of International Scientific Researches","volume":"119 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Financial Stress Index Using Wavelet Transform Artificial Neural Networks\",\"authors\":\"Salim Sercan Sari\",\"doi\":\"10.23834/isrjournal.1159770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finansal risk ve belirsizlikler nedeniyle karşılaşılan problemler dikkate alındığında, finansal stres endeksinin belirlenmesi büyük önem taşımaktadır. Çalışma ile makine öğrenmesi yöntemleri kullanılarak finansal stres endeksi seviyesinin tahmin edilmesi amaçlanmaktadır. Bu amaçla finansal stres endeksinin haftalık zaman serileri, bağımsız ve hibrit modeller kullanılarak incelenmiştir. Yapay sinir ağları, bağımsız makine öğrenme modelleri olarak kullanılırken, hibrit modeller oluşturmak için bir ön işleme tekniği olarak dalgacık dönüşümü kullanılmıştır. Ayrıca, finansal stres endeksi tahminlerinde, model doğruluklarını artırmak için otokorelasyon fonksiyonlarını kullanarak gecikme uzunlukları elde edilmiştir. Çalışmanın bulguları, çeşitli performans göstergeleri açısından değerlendirilmiştir. Finansal stres endeksinin tahmin edilmesinde dalgacık dönüşümlü yapay sinir ağları modelinin, yalın yapay sinir ağları modelinden daha iyi performans sergilediği tespit edilmiştir. Çalışma sonuçlarının finansal stres endeksini takip eden araştırmacı ve uygulayıcılar için fayda sağlayacağı düşünülmektedir.  \",\"PeriodicalId\":274866,\"journal\":{\"name\":\"The Journal of International Scientific Researches\",\"volume\":\"119 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of International Scientific Researches\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23834/isrjournal.1159770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of International Scientific Researches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23834/isrjournal.1159770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到金融风险和不确定性所带来的问题,确定金融压力指数具有重要意义。本研究旨在利用机器学习方法估算金融压力指数水平。为此,使用独立模型和混合模型对金融压力指数的每周时间序列进行分析。人工神经网络被用作独立机器学习模型,而小波变换被用作创建混合模型的预处理技术。此外,还利用自相关函数推导出滞后长度,以提高金融压力指数预测模型的准确性。研究结果根据各种性能指标进行了评估。结果发现,在预测金融压力指数方面,小波变换神经网络模型优于普通神经网络模型。研究结果将对金融压力指数的研究人员和从业人员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Financial Stress Index Using Wavelet Transform Artificial Neural Networks
Finansal risk ve belirsizlikler nedeniyle karşılaşılan problemler dikkate alındığında, finansal stres endeksinin belirlenmesi büyük önem taşımaktadır. Çalışma ile makine öğrenmesi yöntemleri kullanılarak finansal stres endeksi seviyesinin tahmin edilmesi amaçlanmaktadır. Bu amaçla finansal stres endeksinin haftalık zaman serileri, bağımsız ve hibrit modeller kullanılarak incelenmiştir. Yapay sinir ağları, bağımsız makine öğrenme modelleri olarak kullanılırken, hibrit modeller oluşturmak için bir ön işleme tekniği olarak dalgacık dönüşümü kullanılmıştır. Ayrıca, finansal stres endeksi tahminlerinde, model doğruluklarını artırmak için otokorelasyon fonksiyonlarını kullanarak gecikme uzunlukları elde edilmiştir. Çalışmanın bulguları, çeşitli performans göstergeleri açısından değerlendirilmiştir. Finansal stres endeksinin tahmin edilmesinde dalgacık dönüşümlü yapay sinir ağları modelinin, yalın yapay sinir ağları modelinden daha iyi performans sergilediği tespit edilmiştir. Çalışma sonuçlarının finansal stres endeksini takip eden araştırmacı ve uygulayıcılar için fayda sağlayacağı düşünülmektedir.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信