大型连接查询优化问题不同解决方案的比较

D. Petković
{"title":"大型连接查询优化问题不同解决方案的比较","authors":"D. Petković","doi":"10.1109/DBKDA.2010.1","DOIUrl":null,"url":null,"abstract":"The article explores the optimization of queries using genetic algorithms and compares it with the conventional query optimization component. Genetic algorithms (GAs), as a data mining technique, have been shown to be a promising technique in solving the ordering of join operations in large join queries. In practice, a genetic algorithm has been implemented in the PostgreSQL database system. Using this implementation, we compare the conventional component for an exhaustive search with the corresponding module based on a genetic algorithm. Our results show that the use of a genetic algorithm is a viable solution for optimization of large join queries, i.e., that the use of such a module outperforms the conventional query optimization component for queries with more than 12 join operations","PeriodicalId":273177,"journal":{"name":"2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparison of Different Solutions for Solving the Optimization Problem of Large Join Queries\",\"authors\":\"D. Petković\",\"doi\":\"10.1109/DBKDA.2010.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article explores the optimization of queries using genetic algorithms and compares it with the conventional query optimization component. Genetic algorithms (GAs), as a data mining technique, have been shown to be a promising technique in solving the ordering of join operations in large join queries. In practice, a genetic algorithm has been implemented in the PostgreSQL database system. Using this implementation, we compare the conventional component for an exhaustive search with the corresponding module based on a genetic algorithm. Our results show that the use of a genetic algorithm is a viable solution for optimization of large join queries, i.e., that the use of such a module outperforms the conventional query optimization component for queries with more than 12 join operations\",\"PeriodicalId\":273177,\"journal\":{\"name\":\"2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DBKDA.2010.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Advances in Databases, Knowledge, and Data Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBKDA.2010.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文探讨了使用遗传算法的查询优化,并将其与传统的查询优化组件进行了比较。遗传算法(GAs)作为一种数据挖掘技术,在解决大型连接查询中连接操作的排序方面已被证明是一种很有前途的技术。在实际应用中,在PostgreSQL数据库系统中实现了遗传算法。使用此实现,我们将穷举搜索的传统组件与基于遗传算法的相应模块进行比较。我们的结果表明,使用遗传算法是优化大型连接查询的可行解决方案,也就是说,对于具有超过12个连接操作的查询,使用这种模块的性能优于传统查询优化组件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Different Solutions for Solving the Optimization Problem of Large Join Queries
The article explores the optimization of queries using genetic algorithms and compares it with the conventional query optimization component. Genetic algorithms (GAs), as a data mining technique, have been shown to be a promising technique in solving the ordering of join operations in large join queries. In practice, a genetic algorithm has been implemented in the PostgreSQL database system. Using this implementation, we compare the conventional component for an exhaustive search with the corresponding module based on a genetic algorithm. Our results show that the use of a genetic algorithm is a viable solution for optimization of large join queries, i.e., that the use of such a module outperforms the conventional query optimization component for queries with more than 12 join operations
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信