生成视频文件的描述元数据

A. Maratea, A. Petrosino, M. Manzo
{"title":"生成视频文件的描述元数据","authors":"A. Maratea, A. Petrosino, M. Manzo","doi":"10.1145/2516775.2516795","DOIUrl":null,"url":null,"abstract":"Automatic Metadata Generation in the context of e-learning standards is usually referred to algorithms able to process and annotate semi structured documents in plain text. As most of the information available on the web nowadays is unstructured and in the form of multimedia files, the need for more general approaches arises. We propose an automatic metadata generation procedure that allows to label specific unstructured data (video lectures) with metadata compliant to the Learning Object Metadata standard. After preprocessing, three different summarization algorithms are tested and used to obtain a synthetic description of video content, both in terms of Description and Title. Results show that, in the provided context, the obtained Description has a good agreement with the lesson abstract written by its author.","PeriodicalId":316788,"journal":{"name":"International Conference on Computer Systems and Technologies","volume":"73-74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Generation of description metadata for video files\",\"authors\":\"A. Maratea, A. Petrosino, M. Manzo\",\"doi\":\"10.1145/2516775.2516795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic Metadata Generation in the context of e-learning standards is usually referred to algorithms able to process and annotate semi structured documents in plain text. As most of the information available on the web nowadays is unstructured and in the form of multimedia files, the need for more general approaches arises. We propose an automatic metadata generation procedure that allows to label specific unstructured data (video lectures) with metadata compliant to the Learning Object Metadata standard. After preprocessing, three different summarization algorithms are tested and used to obtain a synthetic description of video content, both in terms of Description and Title. Results show that, in the provided context, the obtained Description has a good agreement with the lesson abstract written by its author.\",\"PeriodicalId\":316788,\"journal\":{\"name\":\"International Conference on Computer Systems and Technologies\",\"volume\":\"73-74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Systems and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2516775.2516795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2516775.2516795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在电子学习标准的上下文中,自动元数据生成通常是指能够以纯文本处理和注释半结构化文档的算法。由于现在网络上的大多数信息都是非结构化的,而且是以多媒体文件的形式出现的,因此需要更通用的方法。我们提出了一个自动元数据生成过程,该过程允许使用符合学习对象元数据标准的元数据标记特定的非结构化数据(视频讲座)。在预处理后,测试了三种不同的摘要算法,并使用它们分别从description和Title两个方面对视频内容进行了综合描述。结果表明,在给定的语境下,获得的描述与作者撰写的课程摘要有很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of description metadata for video files
Automatic Metadata Generation in the context of e-learning standards is usually referred to algorithms able to process and annotate semi structured documents in plain text. As most of the information available on the web nowadays is unstructured and in the form of multimedia files, the need for more general approaches arises. We propose an automatic metadata generation procedure that allows to label specific unstructured data (video lectures) with metadata compliant to the Learning Object Metadata standard. After preprocessing, three different summarization algorithms are tested and used to obtain a synthetic description of video content, both in terms of Description and Title. Results show that, in the provided context, the obtained Description has a good agreement with the lesson abstract written by its author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信