改进的最优型椭圆曲线盲签名方案在阈值签名中的应用

Peng Jian-fen, Zhou Yajian, Wang Cong, Yang Yixian
{"title":"改进的最优型椭圆曲线盲签名方案在阈值签名中的应用","authors":"Peng Jian-fen, Zhou Yajian, Wang Cong, Yang Yixian","doi":"10.1109/ICNDS.2010.5479344","DOIUrl":null,"url":null,"abstract":"Expression of blind message in the optimal-type blind signature scheme was modified so that it can combine with threshold signature, which leads to an effective threshold blind signature scheme based on elliptic curve cryptography, it has the following securities: strong verifiability, nonrepudiation, unforgeability, blindness and robustness, and also takes advantage of characteristics of elliptic curve such as higher security and shorter key, as well as lower computational complexity compared with the previous schemes.","PeriodicalId":403283,"journal":{"name":"2010 International Conference on Networking and Digital Society","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An application of modified optimal-type elliptic curve blind signature scheme to threshold signature\",\"authors\":\"Peng Jian-fen, Zhou Yajian, Wang Cong, Yang Yixian\",\"doi\":\"10.1109/ICNDS.2010.5479344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expression of blind message in the optimal-type blind signature scheme was modified so that it can combine with threshold signature, which leads to an effective threshold blind signature scheme based on elliptic curve cryptography, it has the following securities: strong verifiability, nonrepudiation, unforgeability, blindness and robustness, and also takes advantage of characteristics of elliptic curve such as higher security and shorter key, as well as lower computational complexity compared with the previous schemes.\",\"PeriodicalId\":403283,\"journal\":{\"name\":\"2010 International Conference on Networking and Digital Society\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Networking and Digital Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNDS.2010.5479344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Networking and Digital Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNDS.2010.5479344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对最优盲签名方案中盲消息的表达式进行了修改,使其能够与门限签名相结合,从而得到了一种有效的基于椭圆曲线密码的门限盲签名方案,该方案具有以下优点:该方案具有较强的可验证性、不可否认性、不可伪造性、盲性和鲁棒性,并利用椭圆曲线的安全性高、密钥短等特点,与现有方案相比计算复杂度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of modified optimal-type elliptic curve blind signature scheme to threshold signature
Expression of blind message in the optimal-type blind signature scheme was modified so that it can combine with threshold signature, which leads to an effective threshold blind signature scheme based on elliptic curve cryptography, it has the following securities: strong verifiability, nonrepudiation, unforgeability, blindness and robustness, and also takes advantage of characteristics of elliptic curve such as higher security and shorter key, as well as lower computational complexity compared with the previous schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信