利用机电阻抗技术提取波导中的非传播模式

Keping Zhang, Ranting Cui, Xuan Zhu
{"title":"利用机电阻抗技术提取波导中的非传播模式","authors":"Keping Zhang, Ranting Cui, Xuan Zhu","doi":"10.32548/rs.2022.017","DOIUrl":null,"url":null,"abstract":"Elastic waves in elongated bars exhibit complex dispersion, including propagating and non-propagating modes. We investigated the feasibility of extracting non-propagating modes through the electromechanical impedance (EMI) method in a rectangular bar structure through numerical simulation. First, the dispersion curves and mode shapes were computed to identify non-propagating modes. Second, a finite element model consisting of a piezoelectric lead zirconate titanate (PZT) patch and a rectangular bar was established to understand structural responses in the frequency-wavenumber (f-k) domain and the corresponding conductance spectra from the EMI measurements. Zero-group-velocity (ZGV) and cut-off frequency resonances were identified in both EMI signature and structural responses. The paper demonstrated the potential of the proposed EMI technique to extract non-propagating modes in waveguide structures for quantitative nondestructive evaluation (NDE).","PeriodicalId":367504,"journal":{"name":"ASNT 30th Research Symposium Conference Proceedings","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Non-Propagating Modes in Waveguides via Electro-Mechanical Impedance Techn\",\"authors\":\"Keping Zhang, Ranting Cui, Xuan Zhu\",\"doi\":\"10.32548/rs.2022.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elastic waves in elongated bars exhibit complex dispersion, including propagating and non-propagating modes. We investigated the feasibility of extracting non-propagating modes through the electromechanical impedance (EMI) method in a rectangular bar structure through numerical simulation. First, the dispersion curves and mode shapes were computed to identify non-propagating modes. Second, a finite element model consisting of a piezoelectric lead zirconate titanate (PZT) patch and a rectangular bar was established to understand structural responses in the frequency-wavenumber (f-k) domain and the corresponding conductance spectra from the EMI measurements. Zero-group-velocity (ZGV) and cut-off frequency resonances were identified in both EMI signature and structural responses. The paper demonstrated the potential of the proposed EMI technique to extract non-propagating modes in waveguide structures for quantitative nondestructive evaluation (NDE).\",\"PeriodicalId\":367504,\"journal\":{\"name\":\"ASNT 30th Research Symposium Conference Proceedings\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASNT 30th Research Symposium Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32548/rs.2022.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASNT 30th Research Symposium Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32548/rs.2022.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弹性波在长杆中表现出复杂的色散,包括传播和非传播模式。通过数值模拟研究了利用机电阻抗法提取矩形棒材结构非传播模态的可行性。首先,计算色散曲线和模态振型来识别非传播模式。其次,建立了由压电锆钛酸铅(PZT)贴片和矩形棒组成的有限元模型,以了解频率-波数(f-k)域的结构响应和相应的电磁干扰测量的电导谱。在电磁干扰特征和结构响应中都发现了零群速度(ZGV)和截止频率共振。本文展示了所提出的电磁干扰技术在波导结构中提取非传播模式用于定量无损评估(NDE)的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Non-Propagating Modes in Waveguides via Electro-Mechanical Impedance Techn
Elastic waves in elongated bars exhibit complex dispersion, including propagating and non-propagating modes. We investigated the feasibility of extracting non-propagating modes through the electromechanical impedance (EMI) method in a rectangular bar structure through numerical simulation. First, the dispersion curves and mode shapes were computed to identify non-propagating modes. Second, a finite element model consisting of a piezoelectric lead zirconate titanate (PZT) patch and a rectangular bar was established to understand structural responses in the frequency-wavenumber (f-k) domain and the corresponding conductance spectra from the EMI measurements. Zero-group-velocity (ZGV) and cut-off frequency resonances were identified in both EMI signature and structural responses. The paper demonstrated the potential of the proposed EMI technique to extract non-propagating modes in waveguide structures for quantitative nondestructive evaluation (NDE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信