锂离子电池SOH估算与RUL预测的新方法

Siwen Zhang
{"title":"锂离子电池SOH估算与RUL预测的新方法","authors":"Siwen Zhang","doi":"10.1109/ICIEA.2018.8398166","DOIUrl":null,"url":null,"abstract":"State of health (SOH) estimation and remaining useful lifetime (RUL) prediction are important for a battery management system (BMS). This paper presents a new method to estimate SOH by taking local voltage variation and capacity variation in charging or discharging process of the battery as SOH indexes, and realizes RUL prediction based on a particle filter. The effectiveness is validated using a NCM/LTO lithiumion battery pack.","PeriodicalId":140420,"journal":{"name":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new method for lithium-ion battery's SOH estimation and RUL prediction\",\"authors\":\"Siwen Zhang\",\"doi\":\"10.1109/ICIEA.2018.8398166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State of health (SOH) estimation and remaining useful lifetime (RUL) prediction are important for a battery management system (BMS). This paper presents a new method to estimate SOH by taking local voltage variation and capacity variation in charging or discharging process of the battery as SOH indexes, and realizes RUL prediction based on a particle filter. The effectiveness is validated using a NCM/LTO lithiumion battery pack.\",\"PeriodicalId\":140420,\"journal\":{\"name\":\"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2018.8398166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2018.8398166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

健康状态(SOH)估计和剩余使用寿命(RUL)预测是电池管理系统(BMS)的重要组成部分。提出了一种以电池充放电过程中的局部电压变化和容量变化作为SOH指标来估计SOH的新方法,并实现了基于粒子滤波的RUL预测。使用NCM/LTO锂离子电池组验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for lithium-ion battery's SOH estimation and RUL prediction
State of health (SOH) estimation and remaining useful lifetime (RUL) prediction are important for a battery management system (BMS). This paper presents a new method to estimate SOH by taking local voltage variation and capacity variation in charging or discharging process of the battery as SOH indexes, and realizes RUL prediction based on a particle filter. The effectiveness is validated using a NCM/LTO lithiumion battery pack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信