自组织移动摄像机网络的姿态估计

Zsolt Sánta, Z. Kato
{"title":"自组织移动摄像机网络的姿态估计","authors":"Zsolt Sánta, Z. Kato","doi":"10.1109/DICTA.2013.6691514","DOIUrl":null,"url":null,"abstract":"An algorithm is proposed for the pose estimation of ad-hoc mobile camera networks with overlapping views. The main challenge is to estimate camera parameters with respect to the 3D scene without any specific calibration pattern, hence allowing for a consistent, camera-independent world coordinate system. The only assumption about the scene is that it contains a planar surface patch of a low-rank texture, which is visible in at least two cameras. Such low-rank patterns are quite common in urban environments. The proposed algorithm consists of three main steps: relative pose estimation of the cameras within the network, followed by the localization of the network within the 3D scene using a low-rank surface patch, and finally the estimation of a consistent scale for the whole system. The algorithm follows a distributed architecture, hence the computing power of the participating mobile devices are efficiently used. The performance and robustness of the proposed algorithm have been analyzed on both synthetic and real data. Experimental results confirmed the relevance and applicability of the method.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pose Estimation of Ad-Hoc Mobile Camera Networks\",\"authors\":\"Zsolt Sánta, Z. Kato\",\"doi\":\"10.1109/DICTA.2013.6691514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is proposed for the pose estimation of ad-hoc mobile camera networks with overlapping views. The main challenge is to estimate camera parameters with respect to the 3D scene without any specific calibration pattern, hence allowing for a consistent, camera-independent world coordinate system. The only assumption about the scene is that it contains a planar surface patch of a low-rank texture, which is visible in at least two cameras. Such low-rank patterns are quite common in urban environments. The proposed algorithm consists of three main steps: relative pose estimation of the cameras within the network, followed by the localization of the network within the 3D scene using a low-rank surface patch, and finally the estimation of a consistent scale for the whole system. The algorithm follows a distributed architecture, hence the computing power of the participating mobile devices are efficiently used. The performance and robustness of the proposed algorithm have been analyzed on both synthetic and real data. Experimental results confirmed the relevance and applicability of the method.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种具有重叠视图的自组织移动摄像机网络的姿态估计算法。主要的挑战是在没有任何特定校准模式的情况下,根据3D场景估计相机参数,从而实现一致的、独立于相机的世界坐标系统。关于场景的唯一假设是它包含一个低秩纹理的平面补丁,至少在两个相机中可见。这种低阶模式在城市环境中很常见。该算法包括三个主要步骤:网络内相机的相对姿态估计,然后使用低秩表面补丁在3D场景中对网络进行定位,最后估计整个系统的一致尺度。该算法采用分布式架构,有效地利用了参与的移动设备的计算能力。在合成数据和实际数据上分析了该算法的性能和鲁棒性。实验结果证实了该方法的相关性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pose Estimation of Ad-Hoc Mobile Camera Networks
An algorithm is proposed for the pose estimation of ad-hoc mobile camera networks with overlapping views. The main challenge is to estimate camera parameters with respect to the 3D scene without any specific calibration pattern, hence allowing for a consistent, camera-independent world coordinate system. The only assumption about the scene is that it contains a planar surface patch of a low-rank texture, which is visible in at least two cameras. Such low-rank patterns are quite common in urban environments. The proposed algorithm consists of three main steps: relative pose estimation of the cameras within the network, followed by the localization of the network within the 3D scene using a low-rank surface patch, and finally the estimation of a consistent scale for the whole system. The algorithm follows a distributed architecture, hence the computing power of the participating mobile devices are efficiently used. The performance and robustness of the proposed algorithm have been analyzed on both synthetic and real data. Experimental results confirmed the relevance and applicability of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信