任务5:有毒跨度检测的半监督学习和骰子损失

Archit Bansal, Abhay Kaushik, Ashutosh Modi
{"title":"任务5:有毒跨度检测的半监督学习和骰子损失","authors":"Archit Bansal, Abhay Kaushik, Ashutosh Modi","doi":"10.18653/v1/2021.semeval-1.24","DOIUrl":null,"url":null,"abstract":"In this work, we present our approach and findings for SemEval-2021 Task 5 - Toxic Spans Detection. The task’s main aim was to identify spans to which a given text’s toxicity could be attributed. The task is challenging mainly due to two constraints: the small training dataset and imbalanced class distribution. Our paper investigates two techniques, semi-supervised learning and learning with Self-Adjusting Dice Loss, for tackling these challenges. Our submitted system (ranked ninth on the leader board) consisted of an ensemble of various pre-trained Transformer Language Models trained using either of the above-proposed techniques.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"IITK@Detox at SemEval-2021 Task 5: Semi-Supervised Learning and Dice Loss for Toxic Spans Detection\",\"authors\":\"Archit Bansal, Abhay Kaushik, Ashutosh Modi\",\"doi\":\"10.18653/v1/2021.semeval-1.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present our approach and findings for SemEval-2021 Task 5 - Toxic Spans Detection. The task’s main aim was to identify spans to which a given text’s toxicity could be attributed. The task is challenging mainly due to two constraints: the small training dataset and imbalanced class distribution. Our paper investigates two techniques, semi-supervised learning and learning with Self-Adjusting Dice Loss, for tackling these challenges. Our submitted system (ranked ninth on the leader board) consisted of an ensemble of various pre-trained Transformer Language Models trained using either of the above-proposed techniques.\",\"PeriodicalId\":444285,\"journal\":{\"name\":\"International Workshop on Semantic Evaluation\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Semantic Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.semeval-1.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.semeval-1.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们介绍了SemEval-2021任务5 -毒性跨度检测的方法和发现。这项任务的主要目的是确定给定文本的毒性可归因于哪些范围。任务的挑战性主要来自两个方面的限制:训练数据集小和类分布不平衡。本文研究了半监督学习和自调整骰子损失学习两种技术来解决这些挑战。我们提交的系统(在排行榜上排名第九)由使用上述任一种技术训练的各种预训练的Transformer Language Models组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IITK@Detox at SemEval-2021 Task 5: Semi-Supervised Learning and Dice Loss for Toxic Spans Detection
In this work, we present our approach and findings for SemEval-2021 Task 5 - Toxic Spans Detection. The task’s main aim was to identify spans to which a given text’s toxicity could be attributed. The task is challenging mainly due to two constraints: the small training dataset and imbalanced class distribution. Our paper investigates two techniques, semi-supervised learning and learning with Self-Adjusting Dice Loss, for tackling these challenges. Our submitted system (ranked ninth on the leader board) consisted of an ensemble of various pre-trained Transformer Language Models trained using either of the above-proposed techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信