ITER TF线圈间隙填充浸渍方法的发展

M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno
{"title":"ITER TF线圈间隙填充浸渍方法的发展","authors":"M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno","doi":"10.2221/jcsj.55.409","DOIUrl":null,"url":null,"abstract":"Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.","PeriodicalId":143949,"journal":{"name":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of Gap-filling Impregnation Method of ITER TF Coils\",\"authors\":\"M. Nakamoto, Y. Kasai, Kazumi Yoshizawa, K. Sakamoto, N. Koizumi, M. Nakahira, M. Yamane, M. Hasegawa, Kengo Ohashi, T. Minato, K. Kuno\",\"doi\":\"10.2221/jcsj.55.409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.\",\"PeriodicalId\":143949,\"journal\":{\"name\":\"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2221/jcsj.55.409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2221/jcsj.55.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

简介:ITER环形场(TF)线圈由一个绕组包(WP)和一个TF线圈盒(TFCC)组成。在TF线圈的制造中,WP和TFCC之间的间隙用耐辐射的甘油三酯-对氨基酚(TGPAP)树脂填充。采用真空加压浸渍(VPI)。所选择的树脂体系存在两个潜在的问题:高粘度和固化后开裂。为了开发将所选树脂应用于TF线圈生产的技术,进行了一系列的生产优化:裂缝对策、窄间隙注射和压力控制。在裂缝对策中,添加玻纤带或玻纤片层可有效防止裂缝树脂碎裂。由于开裂的树脂只要保持在原来的位置就不会影响TF线圈的质量,因此增加限制玻璃纤维层可以解决这个问题。在窄间隙定性试验中,通过选择适当的玻璃纤维层添加条件,观察了在2mm宽的空间内注射树脂的情况。压力鉴定试验表明,不加加压固化的树脂可满足抗压强度要求。根据这些结果,开发了TF线圈的生产技术,并且随着这些技术的实施,日本首个TF线圈的间隙填充于2019年成功完成。从那时起,又有两个TF线圈完成了一些改进的间隙填充过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Gap-filling Impregnation Method of ITER TF Coils
Synopsis : The ITER Toroidal Field (TF) coil is composed of a Winding Pack (WP) and a TF coil case (TFCC). In the manufacturing of a TF coil, the gap between the WP and the TFCC is filled with radiation resistant Triglycidyl-p-aminophenol (TGPAP) resin. Vacuum Pressure Impregnation (VPI) is adopted. The selected resin system displayed two potential problems: high viscosity and cracking after cure. A series of production optimizations have been performed to develop techniques to apply the selected resin for the TF coil production: crack countermeasure, narrow gap injection, and pressure control. For crack countermeasure, the addition of fiberglass tape or sheet layer was found to be effective in preventing fragmentation of cracked resin. Since the cracked resin would not harm the TF coil quality as long as it stays in the original position, addition of confining fiberglass layers solves the problem. In narrow gap qualification tests, resin injection into a 2 mm wide space was observed with proper selection of fiberglass layer addition conditions. The pressure qualification test showed that resin cured without additional pressurization can satisfy the compression strength requirements. From those results, techniques for the TF coil production have been developed, and with the implementation of those techniques the gap-filling of the first TF coil in Japan was successfully completed in 2019. Since then, two more TF coils have completed the gap-filling process with some improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信