PAFFI:现实场景中雾基础设施的性能分析框架

C. Canali, R. Lancellotti
{"title":"PAFFI:现实场景中雾基础设施的性能分析框架","authors":"C. Canali, R. Lancellotti","doi":"10.1109/CCCS.2019.8888117","DOIUrl":null,"url":null,"abstract":"The growing popularity of applications involving the process of a huge amount of data and requiring high scalability and low latency represents the main driver for the success of the fog computing paradigm. A set of fog nodes close to the network edge and hosting functions such as data aggregation, filtering or latency sensitive applications can avoid the risk of high latency due to geographic data transfer and network links congestion that hinder the viability of the traditional cloud computing paradigm for a class of applications including support for smart cities services or autonomous driving. However, the design of fog infrastructures requires novel techniques for system modeling and performance evaluation able to capture a realistic scenario starting from the geographic location of the infrastructure elements. In this paper we propose PAFFI, a framework for the performance analysis of fog infrastructures in realistic scenarios. We describe the main features of the framework and its capability to automatically generate realistic fog topologies, with an optimized mapping between sensors, fog nodes and cloud data centers, whose performance can be evaluated by means of simulation.","PeriodicalId":152148,"journal":{"name":"2019 4th International Conference on Computing, Communications and Security (ICCCS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"PAFFI: Performance Analysis Framework for Fog Infrastructures in realistic scenarios\",\"authors\":\"C. Canali, R. Lancellotti\",\"doi\":\"10.1109/CCCS.2019.8888117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing popularity of applications involving the process of a huge amount of data and requiring high scalability and low latency represents the main driver for the success of the fog computing paradigm. A set of fog nodes close to the network edge and hosting functions such as data aggregation, filtering or latency sensitive applications can avoid the risk of high latency due to geographic data transfer and network links congestion that hinder the viability of the traditional cloud computing paradigm for a class of applications including support for smart cities services or autonomous driving. However, the design of fog infrastructures requires novel techniques for system modeling and performance evaluation able to capture a realistic scenario starting from the geographic location of the infrastructure elements. In this paper we propose PAFFI, a framework for the performance analysis of fog infrastructures in realistic scenarios. We describe the main features of the framework and its capability to automatically generate realistic fog topologies, with an optimized mapping between sensors, fog nodes and cloud data centers, whose performance can be evaluated by means of simulation.\",\"PeriodicalId\":152148,\"journal\":{\"name\":\"2019 4th International Conference on Computing, Communications and Security (ICCCS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Computing, Communications and Security (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCS.2019.8888117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Computing, Communications and Security (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCS.2019.8888117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

涉及处理大量数据并需要高可伸缩性和低延迟的应用程序的日益流行是雾计算范式成功的主要驱动因素。一组靠近网络边缘的雾节点和托管功能,如数据聚合、过滤或延迟敏感应用程序,可以避免由于地理数据传输和网络链路拥塞而导致的高延迟风险,这些风险阻碍了传统云计算范式在一类应用程序(包括支持智能城市服务或自动驾驶)中的可行性。然而,雾基础设施的设计需要系统建模和性能评估的新技术,能够从基础设施元素的地理位置开始捕捉现实场景。在本文中,我们提出了PAFFI,一个在现实场景中雾基础设施性能分析的框架。我们描述了该框架的主要特征及其自动生成真实雾拓扑的能力,并优化了传感器、雾节点和云数据中心之间的映射,其性能可以通过仿真来评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PAFFI: Performance Analysis Framework for Fog Infrastructures in realistic scenarios
The growing popularity of applications involving the process of a huge amount of data and requiring high scalability and low latency represents the main driver for the success of the fog computing paradigm. A set of fog nodes close to the network edge and hosting functions such as data aggregation, filtering or latency sensitive applications can avoid the risk of high latency due to geographic data transfer and network links congestion that hinder the viability of the traditional cloud computing paradigm for a class of applications including support for smart cities services or autonomous driving. However, the design of fog infrastructures requires novel techniques for system modeling and performance evaluation able to capture a realistic scenario starting from the geographic location of the infrastructure elements. In this paper we propose PAFFI, a framework for the performance analysis of fog infrastructures in realistic scenarios. We describe the main features of the framework and its capability to automatically generate realistic fog topologies, with an optimized mapping between sensors, fog nodes and cloud data centers, whose performance can be evaluated by means of simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信