没有预先存在的正式模型的异常检测:在工业制造系统中的应用

John A. Broderick, Lindsay V. Allen, D. Tilbury
{"title":"没有预先存在的正式模型的异常检测:在工业制造系统中的应用","authors":"John A. Broderick, Lindsay V. Allen, D. Tilbury","doi":"10.1109/CASE.2011.6042505","DOIUrl":null,"url":null,"abstract":"Some faults in manufacturing systems that are evident in event-based data cannot be detected by existing solutions. This paper summarizes a method for identifying anomalies in event-based data using model generation. The method is based on knowledge of events and resources of the system and generates a set of Petri Net models to detect the anomalies. The method is applied to an industrial machining cell that has been experiencing a gantry waiting problem. The anomaly detection solution is able to accurately identify the gantry waiting anomaly and another anomaly that occurred right before the gantry waiting issue, indicating a possible cause.","PeriodicalId":236208,"journal":{"name":"2011 IEEE International Conference on Automation Science and Engineering","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anomaly detection without a pre-existing formal model: Application to an industrial manufacturing system\",\"authors\":\"John A. Broderick, Lindsay V. Allen, D. Tilbury\",\"doi\":\"10.1109/CASE.2011.6042505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some faults in manufacturing systems that are evident in event-based data cannot be detected by existing solutions. This paper summarizes a method for identifying anomalies in event-based data using model generation. The method is based on knowledge of events and resources of the system and generates a set of Petri Net models to detect the anomalies. The method is applied to an industrial machining cell that has been experiencing a gantry waiting problem. The anomaly detection solution is able to accurately identify the gantry waiting anomaly and another anomaly that occurred right before the gantry waiting issue, indicating a possible cause.\",\"PeriodicalId\":236208,\"journal\":{\"name\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE.2011.6042505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE.2011.6042505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

制造系统中的一些故障在基于事件的数据中很明显,现有的解决方案无法检测到。本文总结了一种基于模型生成的事件数据异常识别方法。该方法基于对系统事件和资源的了解,生成一组Petri网模型来检测异常。将该方法应用于一个工业加工单元,该单元存在龙门等待问题。异常检测解决方案能够准确识别龙门架等待异常和在龙门架等待问题之前发生的另一个异常,指出可能的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomaly detection without a pre-existing formal model: Application to an industrial manufacturing system
Some faults in manufacturing systems that are evident in event-based data cannot be detected by existing solutions. This paper summarizes a method for identifying anomalies in event-based data using model generation. The method is based on knowledge of events and resources of the system and generates a set of Petri Net models to detect the anomalies. The method is applied to an industrial machining cell that has been experiencing a gantry waiting problem. The anomaly detection solution is able to accurately identify the gantry waiting anomaly and another anomaly that occurred right before the gantry waiting issue, indicating a possible cause.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信