一种优化的基于项目的协同过滤推荐算法

Jinbo Zhang, Zhiqing Lin, Bo Xiao, Chuang Zhang
{"title":"一种优化的基于项目的协同过滤推荐算法","authors":"Jinbo Zhang, Zhiqing Lin, Bo Xiao, Chuang Zhang","doi":"10.1109/ICNIDC.2009.5360986","DOIUrl":null,"url":null,"abstract":"Collaborative filtering is a very important technology in E-commerce. Unfortunately, with the increase of users and commodities, the user rating data is extremely sparse, which leads to the low efficient collaborative filtering recommendation system. To address these issues, an optimized collaborative filtering recommendation algorithm based on item is proposed. While calculating the similarity of two items, we obtain the ratio of users who rated both items to those who rated each of them. The ratio is taken into account in this method. The experimental results show that the proposed algorithm can improve the quality of collaborative filtering.","PeriodicalId":127306,"journal":{"name":"2009 IEEE International Conference on Network Infrastructure and Digital Content","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"An optimized item-based collaborative filtering recommendation algorithm\",\"authors\":\"Jinbo Zhang, Zhiqing Lin, Bo Xiao, Chuang Zhang\",\"doi\":\"10.1109/ICNIDC.2009.5360986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering is a very important technology in E-commerce. Unfortunately, with the increase of users and commodities, the user rating data is extremely sparse, which leads to the low efficient collaborative filtering recommendation system. To address these issues, an optimized collaborative filtering recommendation algorithm based on item is proposed. While calculating the similarity of two items, we obtain the ratio of users who rated both items to those who rated each of them. The ratio is taken into account in this method. The experimental results show that the proposed algorithm can improve the quality of collaborative filtering.\",\"PeriodicalId\":127306,\"journal\":{\"name\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2009.5360986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2009.5360986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

协同过滤是电子商务中非常重要的技术。遗憾的是,随着用户和商品的增加,用户评分数据极其稀疏,导致协同过滤推荐系统效率低下。针对这些问题,提出了一种基于项目的优化协同过滤推荐算法。在计算两个项目的相似度时,我们得到对两个项目都进行评级的用户与对每个项目都进行评级的用户的比例。这种方法考虑了比率。实验结果表明,该算法可以提高协同过滤的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An optimized item-based collaborative filtering recommendation algorithm
Collaborative filtering is a very important technology in E-commerce. Unfortunately, with the increase of users and commodities, the user rating data is extremely sparse, which leads to the low efficient collaborative filtering recommendation system. To address these issues, an optimized collaborative filtering recommendation algorithm based on item is proposed. While calculating the similarity of two items, we obtain the ratio of users who rated both items to those who rated each of them. The ratio is taken into account in this method. The experimental results show that the proposed algorithm can improve the quality of collaborative filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信