基于后向自适应的通用变换编码

Vivek K Goyal, Jun Zhuang, M. Vetterli
{"title":"基于后向自适应的通用变换编码","authors":"Vivek K Goyal, Jun Zhuang, M. Vetterli","doi":"10.1109/DCC.1997.582046","DOIUrl":null,"url":null,"abstract":"The method for universal transform coding based on backward adaptation introduced by Goyal et al. (see IEEE Int. Conf. Image Proc., vol.II, p.365-8, 1996) is reviewed and further analyzed. This algorithm uses a linear transform which is periodically updated based on a local Karhunen-Loeve transform (KLT) estimate. The KLT estimate is derived purely from quantized data, so the decoder can track the encoder state without any side information. The effect of estimating only from quantized data is quantitatively analyzed. Two convergence results which hold in the absence of estimation noise are presented. The first applies for any vector dimension but does not preclude the necessity of a sequence of quantization step sizes that goes to zero. The second applies only in the two-dimensional case, but shows local convergence for a fixed, sufficiently small quantization step size. Refinements which reduce the storage and computational requirements of the algorithm are suggested.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Universal transform coding based on backward adaptation\",\"authors\":\"Vivek K Goyal, Jun Zhuang, M. Vetterli\",\"doi\":\"10.1109/DCC.1997.582046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method for universal transform coding based on backward adaptation introduced by Goyal et al. (see IEEE Int. Conf. Image Proc., vol.II, p.365-8, 1996) is reviewed and further analyzed. This algorithm uses a linear transform which is periodically updated based on a local Karhunen-Loeve transform (KLT) estimate. The KLT estimate is derived purely from quantized data, so the decoder can track the encoder state without any side information. The effect of estimating only from quantized data is quantitatively analyzed. Two convergence results which hold in the absence of estimation noise are presented. The first applies for any vector dimension but does not preclude the necessity of a sequence of quantization step sizes that goes to zero. The second applies only in the two-dimensional case, but shows local convergence for a fixed, sufficiently small quantization step size. Refinements which reduce the storage and computational requirements of the algorithm are suggested.\",\"PeriodicalId\":403990,\"journal\":{\"name\":\"Proceedings DCC '97. Data Compression Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '97. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1997.582046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Goyal等人提出了一种基于后向自适应的通用变换编码方法。对《Conf. Image Proc, vol.II, p.365-8, 1996》进行了审查和进一步分析。该算法使用基于局部Karhunen-Loeve变换(KLT)估计的周期性更新的线性变换。KLT估计纯粹来自量化数据,因此解码器可以跟踪编码器状态而不需要任何侧信息。定量分析了仅从量化数据进行估计的效果。给出了在没有估计噪声情况下的两个收敛结果。第一个适用于任何向量维度,但并不排除量化步长序列趋近于零的必要性。第二种方法仅适用于二维情况,但对于一个固定的、足够小的量化步长显示出局部收敛性。提出了减少算法存储和计算需求的改进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal transform coding based on backward adaptation
The method for universal transform coding based on backward adaptation introduced by Goyal et al. (see IEEE Int. Conf. Image Proc., vol.II, p.365-8, 1996) is reviewed and further analyzed. This algorithm uses a linear transform which is periodically updated based on a local Karhunen-Loeve transform (KLT) estimate. The KLT estimate is derived purely from quantized data, so the decoder can track the encoder state without any side information. The effect of estimating only from quantized data is quantitatively analyzed. Two convergence results which hold in the absence of estimation noise are presented. The first applies for any vector dimension but does not preclude the necessity of a sequence of quantization step sizes that goes to zero. The second applies only in the two-dimensional case, but shows local convergence for a fixed, sufficiently small quantization step size. Refinements which reduce the storage and computational requirements of the algorithm are suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信