评非决定论与不可判定性

I. Şahi̇n
{"title":"评非决定论与不可判定性","authors":"I. Şahi̇n","doi":"10.20944/PREPRINTS202106.0056.V1","DOIUrl":null,"url":null,"abstract":"In a recent paper [1], it has been claimed that the outcomes of a quantum coin toss which is idealized as an infinite binary sequence is 1-random. We also defend the correctness of this claim and assert that the outcomes of quantum measurements can be considered as an infinite 1-random or n-random sequence. In this brief note we present our comments on this claim. We have mostly positive but also some negative comments on the arguments of the paper [1]. Furthermore, we speculate a logical-axiomatic study of nature which we believe can intrinsically provide quantum mechanical probabilities based on 1(n)-randomness.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comments on Indeterminism and Undecidability\",\"authors\":\"I. Şahi̇n\",\"doi\":\"10.20944/PREPRINTS202106.0056.V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a recent paper [1], it has been claimed that the outcomes of a quantum coin toss which is idealized as an infinite binary sequence is 1-random. We also defend the correctness of this claim and assert that the outcomes of quantum measurements can be considered as an infinite 1-random or n-random sequence. In this brief note we present our comments on this claim. We have mostly positive but also some negative comments on the arguments of the paper [1]. Furthermore, we speculate a logical-axiomatic study of nature which we believe can intrinsically provide quantum mechanical probabilities based on 1(n)-randomness.\",\"PeriodicalId\":369778,\"journal\":{\"name\":\"arXiv: General Physics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: General Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20944/PREPRINTS202106.0056.V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS202106.0056.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在最近的一篇论文[1]中,有人声称量子抛硬币的结果被理想化为无限二进制序列是1随机的。我们也捍卫这一主张的正确性,并断言量子测量的结果可以被认为是一个无限的1随机或n随机序列。在这篇简短的说明中,我们提出对这一主张的评论。我们对这篇论文的论点大多是正面的,但也有一些负面的评论[1]。此外,我们推测一种自然的逻辑公理化研究,我们相信它本质上可以提供基于1(n)随机性的量子力学概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comments on Indeterminism and Undecidability
In a recent paper [1], it has been claimed that the outcomes of a quantum coin toss which is idealized as an infinite binary sequence is 1-random. We also defend the correctness of this claim and assert that the outcomes of quantum measurements can be considered as an infinite 1-random or n-random sequence. In this brief note we present our comments on this claim. We have mostly positive but also some negative comments on the arguments of the paper [1]. Furthermore, we speculate a logical-axiomatic study of nature which we believe can intrinsically provide quantum mechanical probabilities based on 1(n)-randomness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信