T. Jungeblut, Gregor Sievers, Mario Porrmann, U. Rückert
{"title":"VLIW体系结构中存储子系统的设计空间探索","authors":"T. Jungeblut, Gregor Sievers, Mario Porrmann, U. Rückert","doi":"10.1109/NAS.2010.14","DOIUrl":null,"url":null,"abstract":"In this work we present a design space exploration of the memory subsystem of our configurable CoreVA VLIW architecture. The development of resource efficient processor architectures is based on a two-stage tool flow using a high-level processor specification as a reference. We evaluate several memory configurations like one memory port or two memory ports, as well as different write-miss-allocation modes. Applications ranging from LTE protocol stack over baseband processing up to cryptography and multimedia are evaluated in terms of execution time and energy efficiency. Analyses have shown that the application specific configuration of the memory subsystem can improve energy by up to 25%. Our environment allows the rapid profiling and evaluation of algorithms to choose the most efficient configuration.","PeriodicalId":284549,"journal":{"name":"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Design Space Exploration for Memory Subsystems of VLIW Architectures\",\"authors\":\"T. Jungeblut, Gregor Sievers, Mario Porrmann, U. Rückert\",\"doi\":\"10.1109/NAS.2010.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we present a design space exploration of the memory subsystem of our configurable CoreVA VLIW architecture. The development of resource efficient processor architectures is based on a two-stage tool flow using a high-level processor specification as a reference. We evaluate several memory configurations like one memory port or two memory ports, as well as different write-miss-allocation modes. Applications ranging from LTE protocol stack over baseband processing up to cryptography and multimedia are evaluated in terms of execution time and energy efficiency. Analyses have shown that the application specific configuration of the memory subsystem can improve energy by up to 25%. Our environment allows the rapid profiling and evaluation of algorithms to choose the most efficient configuration.\",\"PeriodicalId\":284549,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAS.2010.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Space Exploration for Memory Subsystems of VLIW Architectures
In this work we present a design space exploration of the memory subsystem of our configurable CoreVA VLIW architecture. The development of resource efficient processor architectures is based on a two-stage tool flow using a high-level processor specification as a reference. We evaluate several memory configurations like one memory port or two memory ports, as well as different write-miss-allocation modes. Applications ranging from LTE protocol stack over baseband processing up to cryptography and multimedia are evaluated in terms of execution time and energy efficiency. Analyses have shown that the application specific configuration of the memory subsystem can improve energy by up to 25%. Our environment allows the rapid profiling and evaluation of algorithms to choose the most efficient configuration.