模糊超椭球体分类自组织网络及其在手写体数字识别中的应用

Yong Liu, Bin Zhao, Shaowei Xia, Ming-Sheng Zhao
{"title":"模糊超椭球体分类自组织网络及其在手写体数字识别中的应用","authors":"Yong Liu, Bin Zhao, Shaowei Xia, Ming-Sheng Zhao","doi":"10.1109/IJCNN.1999.833537","DOIUrl":null,"url":null,"abstract":"This paper proposes a self-organizing network with the fuzzy hyperellipsoid-classifier (FHECFN) and utilizes it to recognize handwritten numerals. Based on the clustering result of SOM, FHECFN divides the center that performs worse taking the advantage of the fuzzy hyperellipsoidal clustering algorithm. When reaching the satisfying requirement, the network stops divining and then obtains the suitable number of prototypes and the hyperellipsoidal classifying result. With the supervised learning algorithm, such as learning vector quantization, the network achieves a better learning result and in the experiments of recognizing the handwritten numerals, the network shows a promising performance.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A self-organizing network with fuzzy hyperellipsoidal classifying and its application in handwritten numeral recognition\",\"authors\":\"Yong Liu, Bin Zhao, Shaowei Xia, Ming-Sheng Zhao\",\"doi\":\"10.1109/IJCNN.1999.833537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a self-organizing network with the fuzzy hyperellipsoid-classifier (FHECFN) and utilizes it to recognize handwritten numerals. Based on the clustering result of SOM, FHECFN divides the center that performs worse taking the advantage of the fuzzy hyperellipsoidal clustering algorithm. When reaching the satisfying requirement, the network stops divining and then obtains the suitable number of prototypes and the hyperellipsoidal classifying result. With the supervised learning algorithm, such as learning vector quantization, the network achieves a better learning result and in the experiments of recognizing the handwritten numerals, the network shows a promising performance.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.833537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种带有模糊超椭球分类器的自组织网络,并将其用于手写数字识别。在SOM聚类结果的基础上,FHECFN利用模糊超椭球聚类算法对表现较差的中心进行划分。当达到满意的要求时,网络停止划分,然后得到合适的原型数量和超椭球形分类结果。通过学习向量量化等监督学习算法,网络取得了较好的学习效果,在手写体数字识别实验中,网络表现出了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A self-organizing network with fuzzy hyperellipsoidal classifying and its application in handwritten numeral recognition
This paper proposes a self-organizing network with the fuzzy hyperellipsoid-classifier (FHECFN) and utilizes it to recognize handwritten numerals. Based on the clustering result of SOM, FHECFN divides the center that performs worse taking the advantage of the fuzzy hyperellipsoidal clustering algorithm. When reaching the satisfying requirement, the network stops divining and then obtains the suitable number of prototypes and the hyperellipsoidal classifying result. With the supervised learning algorithm, such as learning vector quantization, the network achieves a better learning result and in the experiments of recognizing the handwritten numerals, the network shows a promising performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信