大图中新的影响最大化算法研究

Guigang Zhang, Sujie Li, Jian Wang, Ping Liu, Yibing Chen, Yunchuan Luo
{"title":"大图中新的影响最大化算法研究","authors":"Guigang Zhang, Sujie Li, Jian Wang, Ping Liu, Yibing Chen, Yunchuan Luo","doi":"10.1109/WISA.2017.50","DOIUrl":null,"url":null,"abstract":"Influence maximization is a very hot research in social network. However, it is difficult to find a good algorithm to keep balance between the time complexity and computing result' accuracy. In order to solve this problem, in this paper, we propose two new algorithms. Firstly, we present a heuristic algorithm based on the greedy algorithm, which can reduce the time complexity a lot and it will have a good result, too. Then, we present another new algorithm. We use the k-means idea to solve the IM problem. We use the k-means idea to find s seed nodes. At the same time, we prove these two new algorithms.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"New Influence Maximization Algorithm Research in Big Graph\",\"authors\":\"Guigang Zhang, Sujie Li, Jian Wang, Ping Liu, Yibing Chen, Yunchuan Luo\",\"doi\":\"10.1109/WISA.2017.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influence maximization is a very hot research in social network. However, it is difficult to find a good algorithm to keep balance between the time complexity and computing result' accuracy. In order to solve this problem, in this paper, we propose two new algorithms. Firstly, we present a heuristic algorithm based on the greedy algorithm, which can reduce the time complexity a lot and it will have a good result, too. Then, we present another new algorithm. We use the k-means idea to solve the IM problem. We use the k-means idea to find s seed nodes. At the same time, we prove these two new algorithms.\",\"PeriodicalId\":204706,\"journal\":{\"name\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2017.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

影响力最大化是社交网络领域的一个研究热点。然而,很难找到一种好的算法来平衡时间复杂度和计算结果的准确性。为了解决这一问题,本文提出了两种新的算法。首先,在贪心算法的基础上提出了一种启发式算法,该算法大大降低了时间复杂度,并取得了良好的效果。然后,我们提出了另一种新的算法。我们使用k-均值的思想来解决IM问题。我们使用k-均值的思想来找到s个种子节点。同时,对这两种新算法进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Influence Maximization Algorithm Research in Big Graph
Influence maximization is a very hot research in social network. However, it is difficult to find a good algorithm to keep balance between the time complexity and computing result' accuracy. In order to solve this problem, in this paper, we propose two new algorithms. Firstly, we present a heuristic algorithm based on the greedy algorithm, which can reduce the time complexity a lot and it will have a good result, too. Then, we present another new algorithm. We use the k-means idea to solve the IM problem. We use the k-means idea to find s seed nodes. At the same time, we prove these two new algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信