Duy Le, Yi Men, Yun-Jhen Luo, Yixuan Zhou, Linh Nguyen
{"title":"货物递送服务的高效多车辆路径策略","authors":"Duy Le, Yi Men, Yun-Jhen Luo, Yixuan Zhou, Linh Nguyen","doi":"10.36227/TECHRXIV.14481702.V1","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of efficiently planning routes for multiple ground vehicles used in goods delivery services. Given popularity of today's e-commerce, particularly under the COVID-19 pandemic conditions, goods delivery services have been booming than ever, dominated by small-scaled (electric) bikes and promised by autonomous vehicles. However, finding optimal routing paths for multiple delivery vehicles operating simultaneously in order to minimize transportation cost is a fundamental but challenging problem. In this paper, it is first proposed to exploit the mixed integer programming paradigm to model the delivery routing optimization problem (DROP) for multiple simultaneously-operating vehicles given their energy constraints. The routing optimization problem is then solved by the multi-chromosome genetic algorithm, where the number of delivery vehicles can be optimized. The proposed approach was evaluated in a realworld experiment in which goods were expected to be delivered from a depot to 26 suburb locations in Canberra, Australia. The obtained results demonstrate effectiveness of the proposed algorithm.","PeriodicalId":156296,"journal":{"name":"2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Multi-Vehicle Routing Strategy for Goods Delivery Services\",\"authors\":\"Duy Le, Yi Men, Yun-Jhen Luo, Yixuan Zhou, Linh Nguyen\",\"doi\":\"10.36227/TECHRXIV.14481702.V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of efficiently planning routes for multiple ground vehicles used in goods delivery services. Given popularity of today's e-commerce, particularly under the COVID-19 pandemic conditions, goods delivery services have been booming than ever, dominated by small-scaled (electric) bikes and promised by autonomous vehicles. However, finding optimal routing paths for multiple delivery vehicles operating simultaneously in order to minimize transportation cost is a fundamental but challenging problem. In this paper, it is first proposed to exploit the mixed integer programming paradigm to model the delivery routing optimization problem (DROP) for multiple simultaneously-operating vehicles given their energy constraints. The routing optimization problem is then solved by the multi-chromosome genetic algorithm, where the number of delivery vehicles can be optimized. The proposed approach was evaluated in a realworld experiment in which goods were expected to be delivered from a depot to 26 suburb locations in Canberra, Australia. The obtained results demonstrate effectiveness of the proposed algorithm.\",\"PeriodicalId\":156296,\"journal\":{\"name\":\"2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/TECHRXIV.14481702.V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/TECHRXIV.14481702.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Multi-Vehicle Routing Strategy for Goods Delivery Services
The paper addresses the problem of efficiently planning routes for multiple ground vehicles used in goods delivery services. Given popularity of today's e-commerce, particularly under the COVID-19 pandemic conditions, goods delivery services have been booming than ever, dominated by small-scaled (electric) bikes and promised by autonomous vehicles. However, finding optimal routing paths for multiple delivery vehicles operating simultaneously in order to minimize transportation cost is a fundamental but challenging problem. In this paper, it is first proposed to exploit the mixed integer programming paradigm to model the delivery routing optimization problem (DROP) for multiple simultaneously-operating vehicles given their energy constraints. The routing optimization problem is then solved by the multi-chromosome genetic algorithm, where the number of delivery vehicles can be optimized. The proposed approach was evaluated in a realworld experiment in which goods were expected to be delivered from a depot to 26 suburb locations in Canberra, Australia. The obtained results demonstrate effectiveness of the proposed algorithm.