Emmanuel Johnson, Sarah Roediger, Gale M. Lucas, J. Gratch
{"title":"评估学生在谈判时常犯的错误","authors":"Emmanuel Johnson, Sarah Roediger, Gale M. Lucas, J. Gratch","doi":"10.1145/3308532.3329470","DOIUrl":null,"url":null,"abstract":"Research has shown that virtual agents can be effective tools for teaching negotiation. Virtual agents provide an opportuni-ty for students to practice their negotiation skills which leads to better outcomes. However, these negotiation training agents often lack the ability to understand the errors students make when negotiating, thus limiting their effectiveness as training tools. In this article, we argue that automated opponent-modeling techniques serve as effective methods for diagnos-ing important negotiation mistakes. To demonstrate this, we analyze a large number of participant traces generated while negotiating with a set of automated opponents. We show that negotiators' performance is closely tied to their understanding of an opponent's preferences. We further show that opponent modeling techniques can diagnose specific errors includ-ing: failure to elicit diagnostic information from an opponent, failure to utilize the information that was elicited, and failure to understand the transparency of an opponent. These results show that opponent modeling techniques can be effective methods for diagnosing and potentially correcting crucial ne-gotiation errors.","PeriodicalId":112642,"journal":{"name":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Assessing Common Errors Students Make When Negotiating\",\"authors\":\"Emmanuel Johnson, Sarah Roediger, Gale M. Lucas, J. Gratch\",\"doi\":\"10.1145/3308532.3329470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research has shown that virtual agents can be effective tools for teaching negotiation. Virtual agents provide an opportuni-ty for students to practice their negotiation skills which leads to better outcomes. However, these negotiation training agents often lack the ability to understand the errors students make when negotiating, thus limiting their effectiveness as training tools. In this article, we argue that automated opponent-modeling techniques serve as effective methods for diagnos-ing important negotiation mistakes. To demonstrate this, we analyze a large number of participant traces generated while negotiating with a set of automated opponents. We show that negotiators' performance is closely tied to their understanding of an opponent's preferences. We further show that opponent modeling techniques can diagnose specific errors includ-ing: failure to elicit diagnostic information from an opponent, failure to utilize the information that was elicited, and failure to understand the transparency of an opponent. These results show that opponent modeling techniques can be effective methods for diagnosing and potentially correcting crucial ne-gotiation errors.\",\"PeriodicalId\":112642,\"journal\":{\"name\":\"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents\",\"volume\":\"157 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308532.3329470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308532.3329470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing Common Errors Students Make When Negotiating
Research has shown that virtual agents can be effective tools for teaching negotiation. Virtual agents provide an opportuni-ty for students to practice their negotiation skills which leads to better outcomes. However, these negotiation training agents often lack the ability to understand the errors students make when negotiating, thus limiting their effectiveness as training tools. In this article, we argue that automated opponent-modeling techniques serve as effective methods for diagnos-ing important negotiation mistakes. To demonstrate this, we analyze a large number of participant traces generated while negotiating with a set of automated opponents. We show that negotiators' performance is closely tied to their understanding of an opponent's preferences. We further show that opponent modeling techniques can diagnose specific errors includ-ing: failure to elicit diagnostic information from an opponent, failure to utilize the information that was elicited, and failure to understand the transparency of an opponent. These results show that opponent modeling techniques can be effective methods for diagnosing and potentially correcting crucial ne-gotiation errors.