正则化线性分类方法在文本分类中的鲁棒性

Jian Zhang, Yiming Yang
{"title":"正则化线性分类方法在文本分类中的鲁棒性","authors":"Jian Zhang, Yiming Yang","doi":"10.1145/860435.860471","DOIUrl":null,"url":null,"abstract":"Real-world applications often require the classification of documents under situations of small number of features, mis-labeled documents and rare positive examples. This paper investigates the robustness of three regularized linear classification methods (SVM, ridge regression and logistic regression) under above situations. We compare these methods in terms of their loss functions and score distributions, and establish the connection between their optimization problems and generalization error bounds. Several sets of controlled experiments on the Reuters-21578 corpus are conducted to investigate the robustness of these methods. Our results show that ridge regression seems to be the most promising candidate for rare class problems.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Robustness of regularized linear classification methods in text categorization\",\"authors\":\"Jian Zhang, Yiming Yang\",\"doi\":\"10.1145/860435.860471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world applications often require the classification of documents under situations of small number of features, mis-labeled documents and rare positive examples. This paper investigates the robustness of three regularized linear classification methods (SVM, ridge regression and logistic regression) under above situations. We compare these methods in terms of their loss functions and score distributions, and establish the connection between their optimization problems and generalization error bounds. Several sets of controlled experiments on the Reuters-21578 corpus are conducted to investigate the robustness of these methods. Our results show that ridge regression seems to be the most promising candidate for rare class problems.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

现实世界的应用程序通常需要在特征数量少、文档标签错误和罕见的正例的情况下对文档进行分类。本文研究了三种正则化线性分类方法(支持向量机、岭回归和逻辑回归)在上述情况下的鲁棒性。我们比较了这些方法的损失函数和分数分布,并建立了它们的优化问题和泛化误差界限之间的联系。在路透社-21578语料上进行了几组对照实验,以研究这些方法的鲁棒性。我们的研究结果表明,脊回归似乎是罕见类问题最有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of regularized linear classification methods in text categorization
Real-world applications often require the classification of documents under situations of small number of features, mis-labeled documents and rare positive examples. This paper investigates the robustness of three regularized linear classification methods (SVM, ridge regression and logistic regression) under above situations. We compare these methods in terms of their loss functions and score distributions, and establish the connection between their optimization problems and generalization error bounds. Several sets of controlled experiments on the Reuters-21578 corpus are conducted to investigate the robustness of these methods. Our results show that ridge regression seems to be the most promising candidate for rare class problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信