T. Polonelli, Andrea Bentivogli, Guido Comai, M. Magno
{"title":"用于电机预测性维护的自我可持续物联网无线传感器节点","authors":"T. Polonelli, Andrea Bentivogli, Guido Comai, M. Magno","doi":"10.1109/SAS54819.2022.9881349","DOIUrl":null,"url":null,"abstract":"Unexpected equipment failure is expensive and potentially hazardous for workers and users. Periodic inspections and maintenance at predefined intervals aim to limit unplanned production downtime, costly replacement of parts and safety concerns. On the other side, predictive maintenance techniques can monitor equipment as it operates, anticipating deterioration and incoming breakages, enabling just-in-time services at reduced operational costs. This paper presents a deploy and forget predictive maintenance sensor node designed explicitly for industrial electric motors. It is targeted for AC mono and three-phase asynchronous motors and generators, measuring vibrations, environmental noise, temperature, and the external magnetic field. The proposed sensor achieves self-sustainability by exploiting a 4x4 cm thermal source for 72 s with a ∆T of 20 °C, and it features short-long wireless data transfer respectively over WiFi and the cellular NB-IoT network. We tested the prototype on different electric motors, form 4 kW to 110 kW, reporting here its capability to detect anomalies using a vibration spectral analysis.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-sustainable IoT Wireless Sensor Node for Predictive Maintenance on Electric Motors\",\"authors\":\"T. Polonelli, Andrea Bentivogli, Guido Comai, M. Magno\",\"doi\":\"10.1109/SAS54819.2022.9881349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unexpected equipment failure is expensive and potentially hazardous for workers and users. Periodic inspections and maintenance at predefined intervals aim to limit unplanned production downtime, costly replacement of parts and safety concerns. On the other side, predictive maintenance techniques can monitor equipment as it operates, anticipating deterioration and incoming breakages, enabling just-in-time services at reduced operational costs. This paper presents a deploy and forget predictive maintenance sensor node designed explicitly for industrial electric motors. It is targeted for AC mono and three-phase asynchronous motors and generators, measuring vibrations, environmental noise, temperature, and the external magnetic field. The proposed sensor achieves self-sustainability by exploiting a 4x4 cm thermal source for 72 s with a ∆T of 20 °C, and it features short-long wireless data transfer respectively over WiFi and the cellular NB-IoT network. We tested the prototype on different electric motors, form 4 kW to 110 kW, reporting here its capability to detect anomalies using a vibration spectral analysis.\",\"PeriodicalId\":129732,\"journal\":{\"name\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS54819.2022.9881349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-sustainable IoT Wireless Sensor Node for Predictive Maintenance on Electric Motors
Unexpected equipment failure is expensive and potentially hazardous for workers and users. Periodic inspections and maintenance at predefined intervals aim to limit unplanned production downtime, costly replacement of parts and safety concerns. On the other side, predictive maintenance techniques can monitor equipment as it operates, anticipating deterioration and incoming breakages, enabling just-in-time services at reduced operational costs. This paper presents a deploy and forget predictive maintenance sensor node designed explicitly for industrial electric motors. It is targeted for AC mono and three-phase asynchronous motors and generators, measuring vibrations, environmental noise, temperature, and the external magnetic field. The proposed sensor achieves self-sustainability by exploiting a 4x4 cm thermal source for 72 s with a ∆T of 20 °C, and it features short-long wireless data transfer respectively over WiFi and the cellular NB-IoT network. We tested the prototype on different electric motors, form 4 kW to 110 kW, reporting here its capability to detect anomalies using a vibration spectral analysis.