使用单像素传感器网络保护隐私,室内居住者定位

Douglas Roeper, Jiawei Chen, J. Konrad, P. Ishwar
{"title":"使用单像素传感器网络保护隐私,室内居住者定位","authors":"Douglas Roeper, Jiawei Chen, J. Konrad, P. Ishwar","doi":"10.1109/AVSS.2016.7738073","DOIUrl":null,"url":null,"abstract":"We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Privacy-preserving, indoor occupant localization using a network of single-pixel sensors\",\"authors\":\"Douglas Roeper, Jiawei Chen, J. Konrad, P. Ishwar\",\"doi\":\"10.1109/AVSS.2016.7738073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们提出了一种使用单像素可见光传感器网络进行室内居住者定位的方法。除了保护隐私之外,我们的方法大大降低了数据传输速率,并且不受窃听的影响。我们开发了两种纯数据驱动的定位算法,并使用6个这样的传感器网络研究了它们的性能。在一种算法中,我们将监控的地板面积(2.37m×2.72m)划分为3×3网格单元,并使用支持向量机分类器将单个人的位置分类为属于9个单元中的一个。在第二种算法中,我们使用支持向量回归估计人的坐标。在公共(如会议室)和私人(如家庭)场景下的交叉验证测试中,我们获得了67-72%的细胞正确分类率和0.31-0.35m的平均绝对距离误差。考虑到传感器和处理的简单性,这些都是令人鼓舞的结果,可以在今天带来有用的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy-preserving, indoor occupant localization using a network of single-pixel sensors
We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信