{"title":"使用单像素传感器网络保护隐私,室内居住者定位","authors":"Douglas Roeper, Jiawei Chen, J. Konrad, P. Ishwar","doi":"10.1109/AVSS.2016.7738073","DOIUrl":null,"url":null,"abstract":"We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Privacy-preserving, indoor occupant localization using a network of single-pixel sensors\",\"authors\":\"Douglas Roeper, Jiawei Chen, J. Konrad, P. Ishwar\",\"doi\":\"10.1109/AVSS.2016.7738073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.\",\"PeriodicalId\":438290,\"journal\":{\"name\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2016.7738073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Privacy-preserving, indoor occupant localization using a network of single-pixel sensors
We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.