基于质量的距离度量及其在聚类中的应用

D. Taverna, M. Brun, E. Dougherty, Yidong Chen
{"title":"基于质量的距离度量及其在聚类中的应用","authors":"D. Taverna, M. Brun, E. Dougherty, Yidong Chen","doi":"10.1109/LSSA.2006.250390","DOIUrl":null,"url":null,"abstract":"When analyzing biological data sets, a common approach is to partition the data into clusters. Examples of this include finding a subset of genes with co-regulated expression among experiments, grouping similar disease phenotypes, or implicating regions of genetic variation in disease. The ability to separate the data into subsets depends upon the structure of the distribution of points and the choice of clustering algorithm. Furthermore, the biological relevance of the clustering results is biased by the variation among the data points themselves. We introduce a mathematical quality-based distance metric which will allow all data, regardless of its error, to be included in analysis without the need to introduce a cutoff. This removes the need to exclude points or to change the dimensionality. The advantage of this approach is shown by clustering simulated data with added noise","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality-based distance measures and applications to clustering\",\"authors\":\"D. Taverna, M. Brun, E. Dougherty, Yidong Chen\",\"doi\":\"10.1109/LSSA.2006.250390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When analyzing biological data sets, a common approach is to partition the data into clusters. Examples of this include finding a subset of genes with co-regulated expression among experiments, grouping similar disease phenotypes, or implicating regions of genetic variation in disease. The ability to separate the data into subsets depends upon the structure of the distribution of points and the choice of clustering algorithm. Furthermore, the biological relevance of the clustering results is biased by the variation among the data points themselves. We introduce a mathematical quality-based distance metric which will allow all data, regardless of its error, to be included in analysis without the need to introduce a cutoff. This removes the need to exclude points or to change the dimensionality. The advantage of this approach is shown by clustering simulated data with added noise\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分析生物数据集时,一种常见的方法是将数据划分为簇。这方面的例子包括在实验中发现具有共调节表达的基因子集,将相似的疾病表型分组,或暗示疾病中遗传变异的区域。将数据划分为子集的能力取决于点分布的结构和聚类算法的选择。此外,聚类结果的生物学相关性受到数据点本身差异的影响。我们引入了一个基于数学质量的距离度量,它将允许所有数据,无论其误差如何,都包含在分析中,而无需引入截止值。这样就不需要排除点或更改维度。该方法的优点是通过对添加噪声的模拟数据进行聚类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality-based distance measures and applications to clustering
When analyzing biological data sets, a common approach is to partition the data into clusters. Examples of this include finding a subset of genes with co-regulated expression among experiments, grouping similar disease phenotypes, or implicating regions of genetic variation in disease. The ability to separate the data into subsets depends upon the structure of the distribution of points and the choice of clustering algorithm. Furthermore, the biological relevance of the clustering results is biased by the variation among the data points themselves. We introduce a mathematical quality-based distance metric which will allow all data, regardless of its error, to be included in analysis without the need to introduce a cutoff. This removes the need to exclude points or to change the dimensionality. The advantage of this approach is shown by clustering simulated data with added noise
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信