遗传算法的多值逻辑最小化

Y. Hata, Kiyoshi Hayase, Takahiro Hozumi, N. Kamiura, K. Yamato
{"title":"遗传算法的多值逻辑最小化","authors":"Y. Hata, Kiyoshi Hayase, Takahiro Hozumi, N. Kamiura, K. Yamato","doi":"10.1109/ISMVL.1997.601380","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to minimize multiple-valued logic expressions by genetic algorithms. We encode a multiple-valued logic expression as a \"chromosome\" whose length allows to change and corresponds to the number of implicants of the expression. Our fitness function evaluates the following three items. 1. How may outputs does the logic expression represent correctly? 2. How many implicants does the logic expression require? 3. How many connections does the logic expression require? Our method employs the fitness function and minimizes sum-of-products expressions, where sum refers to TSUM or MAX and product refers to MIN of set literals or window literals. The simulation results show that our method derives good results for some arithmetic functions and intends to avoid the local minimal solution, compared to neural-computing-based method.","PeriodicalId":206024,"journal":{"name":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","volume":"24 25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Multiple-valued logic minimization by genetic algorithms\",\"authors\":\"Y. Hata, Kiyoshi Hayase, Takahiro Hozumi, N. Kamiura, K. Yamato\",\"doi\":\"10.1109/ISMVL.1997.601380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach to minimize multiple-valued logic expressions by genetic algorithms. We encode a multiple-valued logic expression as a \\\"chromosome\\\" whose length allows to change and corresponds to the number of implicants of the expression. Our fitness function evaluates the following three items. 1. How may outputs does the logic expression represent correctly? 2. How many implicants does the logic expression require? 3. How many connections does the logic expression require? Our method employs the fitness function and minimizes sum-of-products expressions, where sum refers to TSUM or MAX and product refers to MIN of set literals or window literals. The simulation results show that our method derives good results for some arithmetic functions and intends to avoid the local minimal solution, compared to neural-computing-based method.\",\"PeriodicalId\":206024,\"journal\":{\"name\":\"Proceedings 1997 27th International Symposium on Multiple- Valued Logic\",\"volume\":\"24 25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1997 27th International Symposium on Multiple- Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.1997.601380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1997.601380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文描述了一种用遗传算法求多值逻辑表达式的最小化方法。我们将一个多值逻辑表达式编码为一个“染色体”,其长度允许改变,并对应于表达式的隐含数。我们的适应度函数评估以下三个项目。1. 逻辑表达式能正确表示多少输出?2. 逻辑表达式需要多少暗示?3.逻辑表达式需要多少个连接?我们的方法使用适应度函数并最小化和积表达式,其中sum指TSUM或MAX, product指集合字面量或窗口字面量的MIN。仿真结果表明,与基于神经计算的方法相比,该方法对某些算术函数具有较好的求解效果,并且避免了局部最小解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple-valued logic minimization by genetic algorithms
This paper describes an approach to minimize multiple-valued logic expressions by genetic algorithms. We encode a multiple-valued logic expression as a "chromosome" whose length allows to change and corresponds to the number of implicants of the expression. Our fitness function evaluates the following three items. 1. How may outputs does the logic expression represent correctly? 2. How many implicants does the logic expression require? 3. How many connections does the logic expression require? Our method employs the fitness function and minimizes sum-of-products expressions, where sum refers to TSUM or MAX and product refers to MIN of set literals or window literals. The simulation results show that our method derives good results for some arithmetic functions and intends to avoid the local minimal solution, compared to neural-computing-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信