CG ' 3逻辑的公理化方法

Miguel Pérez-Gaspar, Alejandro Hernández-Tello, J. R. A. Ramírez, Mauricio Osorio
{"title":"CG ' 3逻辑的公理化方法","authors":"Miguel Pérez-Gaspar, Alejandro Hernández-Tello, J. R. A. Ramírez, Mauricio Osorio","doi":"10.1093/jigpal/jzaa014","DOIUrl":null,"url":null,"abstract":"\n In memoriam José Arrazola Ramírez (1962–2018) The logic $\\textbf{G}^{\\prime}_3$ was introduced by Osorio et al. in 2008; it is a three-valued logic, closely related to the paraconsistent logic $\\textbf{CG}^{\\prime}_3$ introduced by Osorio et al. in 2014. The logic $\\textbf{CG}^{\\prime}_3$ is defined in terms of a multi-valued semantics and has the property that each theorem in $\\textbf{G}^{\\prime}_3$ is a theorem in $\\textbf{CG}^{\\prime}_3$. Kripke-type semantics has been given to $\\textbf{CG}^{\\prime}_3$ in two different ways by Borja et al. in 2016. In this work, we continue the study of $\\textbf{CG}^{\\prime}_3$, obtaining a Hilbert-type axiomatic system and proving a soundness and completeness theorem for this logic.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An axiomatic approach to CG′3 logic\",\"authors\":\"Miguel Pérez-Gaspar, Alejandro Hernández-Tello, J. R. A. Ramírez, Mauricio Osorio\",\"doi\":\"10.1093/jigpal/jzaa014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In memoriam José Arrazola Ramírez (1962–2018) The logic $\\\\textbf{G}^{\\\\prime}_3$ was introduced by Osorio et al. in 2008; it is a three-valued logic, closely related to the paraconsistent logic $\\\\textbf{CG}^{\\\\prime}_3$ introduced by Osorio et al. in 2014. The logic $\\\\textbf{CG}^{\\\\prime}_3$ is defined in terms of a multi-valued semantics and has the property that each theorem in $\\\\textbf{G}^{\\\\prime}_3$ is a theorem in $\\\\textbf{CG}^{\\\\prime}_3$. Kripke-type semantics has been given to $\\\\textbf{CG}^{\\\\prime}_3$ in two different ways by Borja et al. in 2016. In this work, we continue the study of $\\\\textbf{CG}^{\\\\prime}_3$, obtaining a Hilbert-type axiomatic system and proving a soundness and completeness theorem for this logic.\",\"PeriodicalId\":304915,\"journal\":{\"name\":\"Log. J. IGPL\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Log. J. IGPL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzaa014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzaa014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了纪念jos Arrazola Ramírez(1962-2018)逻辑$\textbf{G}^{\prime}_3$是由Osorio等人在2008年引入的;它是一种三值逻辑,与2014年由Osorio等人提出的副一致逻辑$\textbf{CG}^{\prime}_3$密切相关。逻辑$\textbf{CG}^{\prime}_3$是根据多值语义定义的,并且具有如下属性:$\textbf{G}^{\prime}_3$中的每个定理都是$\textbf{CG}^{\prime}_3$中的一个定理。Borja等人在2016年以两种不同的方式给出了$\textbf{CG}^{\prime}_3$的kripke类型语义。在这项工作中,我们继续研究$\textbf{CG}^{\prime}_3$,得到了一个hilbert型公理系统,并证明了该逻辑的完备性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An axiomatic approach to CG′3 logic
In memoriam José Arrazola Ramírez (1962–2018) The logic $\textbf{G}^{\prime}_3$ was introduced by Osorio et al. in 2008; it is a three-valued logic, closely related to the paraconsistent logic $\textbf{CG}^{\prime}_3$ introduced by Osorio et al. in 2014. The logic $\textbf{CG}^{\prime}_3$ is defined in terms of a multi-valued semantics and has the property that each theorem in $\textbf{G}^{\prime}_3$ is a theorem in $\textbf{CG}^{\prime}_3$. Kripke-type semantics has been given to $\textbf{CG}^{\prime}_3$ in two different ways by Borja et al. in 2016. In this work, we continue the study of $\textbf{CG}^{\prime}_3$, obtaining a Hilbert-type axiomatic system and proving a soundness and completeness theorem for this logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信