脑电信号后期融合处理的新应用

Huan Yang, Kaijian Xia, Bi Anqi, Pengjiang Qian
{"title":"脑电信号后期融合处理的新应用","authors":"Huan Yang, Kaijian Xia, Bi Anqi, Pengjiang Qian","doi":"10.1109/CSCI49370.2019.00116","DOIUrl":null,"url":null,"abstract":"Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new applications of automatic stage classification of several neuropsychological tests. The tests were staged into three classes: stimulus display, retention interval, and subject response. The considered late fusion methods were: alpha integration; copulas; Dempster-Shafer combination; independent component analysis mixture models; and behavior knowledge space. Late fusion was able to improve the performance for the task, with alpha integration yielding the most stable result.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Applications of Late Fusion Methods for EEG Signal Processing\",\"authors\":\"Huan Yang, Kaijian Xia, Bi Anqi, Pengjiang Qian\",\"doi\":\"10.1109/CSCI49370.2019.00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new applications of automatic stage classification of several neuropsychological tests. The tests were staged into three classes: stimulus display, retention interval, and subject response. The considered late fusion methods were: alpha integration; copulas; Dempster-Shafer combination; independent component analysis mixture models; and behavior knowledge space. Late fusion was able to improve the performance for the task, with alpha integration yielding the most stable result.\",\"PeriodicalId\":103662,\"journal\":{\"name\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI49370.2019.00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

决策融合包括将多个分类器的输出组合成一个更精确或更稳定的公共决策。然而,在大多数情况下,只考虑经典的融合技术。这项工作比较了几种最先进的融合方法在几种神经心理测试自动阶段分类的新应用中的表现。测试分为三类:刺激表现、保留时间和受试者反应。考虑的后期融合方法有:α积分法;连系动词;Dempster-Shafer组合;独立成分分析混合模型;以及行为知识空间。后期融合能够提高任务的性能,alpha积分产生最稳定的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Applications of Late Fusion Methods for EEG Signal Processing
Decision fusion consists in the combination of the outputs of multiple classifiers into a common decision that is more precise or stable. In most cases, however, only classical fusion techniques are considered. This work compares the performance of several state-of-the-art fusion methods on new applications of automatic stage classification of several neuropsychological tests. The tests were staged into three classes: stimulus display, retention interval, and subject response. The considered late fusion methods were: alpha integration; copulas; Dempster-Shafer combination; independent component analysis mixture models; and behavior knowledge space. Late fusion was able to improve the performance for the task, with alpha integration yielding the most stable result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信