一个新的端元,分数丰度,和高光谱图像的对比模型

S. Douglas
{"title":"一个新的端元,分数丰度,和高光谱图像的对比模型","authors":"S. Douglas","doi":"10.1109/ICASSP.2013.6638037","DOIUrl":null,"url":null,"abstract":"In multispectral and hyperspectral image analysis for remote sensing, variations in contrast due to cloud shadows and topography can cause problems in the demixing process, creating false endmembers and erroneous fractional abundance images. This paper introduces a novel hyperspectral mixing model in which pixel contrast is accounted for explicitly in the image formation. A method is described for estimating the per-pixel contrast for any chosen endmember-based demixing algorithm. Applications of the method to both synthetic and real-world satellite imagery illustrate its efficacy.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel endmember, fractional abundance, and contrast model for hyperspectral imagery\",\"authors\":\"S. Douglas\",\"doi\":\"10.1109/ICASSP.2013.6638037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multispectral and hyperspectral image analysis for remote sensing, variations in contrast due to cloud shadows and topography can cause problems in the demixing process, creating false endmembers and erroneous fractional abundance images. This paper introduces a novel hyperspectral mixing model in which pixel contrast is accounted for explicitly in the image formation. A method is described for estimating the per-pixel contrast for any chosen endmember-based demixing algorithm. Applications of the method to both synthetic and real-world satellite imagery illustrate its efficacy.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在遥感多光谱和高光谱图像分析中,由于云层阴影和地形的影响,对比度的变化可能会导致分解过程中的问题,产生假端元和错误的分数丰度图像。本文介绍了一种新的高光谱混合模型,该模型在图像形成过程中明确考虑了像元对比度。描述了一种用于估计任意选择的基于端元的去混算法的逐像素对比度的方法。对合成卫星图像和真实卫星图像的应用表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel endmember, fractional abundance, and contrast model for hyperspectral imagery
In multispectral and hyperspectral image analysis for remote sensing, variations in contrast due to cloud shadows and topography can cause problems in the demixing process, creating false endmembers and erroneous fractional abundance images. This paper introduces a novel hyperspectral mixing model in which pixel contrast is accounted for explicitly in the image formation. A method is described for estimating the per-pixel contrast for any chosen endmember-based demixing algorithm. Applications of the method to both synthetic and real-world satellite imagery illustrate its efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信