杂波条件下多机动目标跟踪的集成局部线性化粒子滤波

Seung-Hyo Park, T. Song, S. Chong
{"title":"杂波条件下多机动目标跟踪的集成局部线性化粒子滤波","authors":"Seung-Hyo Park, T. Song, S. Chong","doi":"10.23919/fusion43075.2019.9011256","DOIUrl":null,"url":null,"abstract":"The integrated particle filter (IPF) algorithm is proposed for single target tracking in clutter that combines the existing particle filters with false track discrimination (FTD) which distinguishes between the true tracks and the false tracks using the target existence probability as a track quality measure. To improve the tracking performance of IPF for maneuvering multitarget tracking, we propose an integrated local linearization particle filter (ILLPF) that applies the FTD to LLPF which approximates the optimal importance density with the updated estimates of a bank of tracking filters. The proposed algorithm is extended to accommodate interacting multiple model-linear multitarget-ILLPF (IMM-LM-ILLPF) for maneuvering target tracking with multiple target dynamic models for robust tracking. A study with Monte Carlo simulation demonstrates the improvement of maneuvering multitarget tracking performance in cluttered environments.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Local Linearization Particle Filter for Multiple Maneuvering Target Tracking in Clutter\",\"authors\":\"Seung-Hyo Park, T. Song, S. Chong\",\"doi\":\"10.23919/fusion43075.2019.9011256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integrated particle filter (IPF) algorithm is proposed for single target tracking in clutter that combines the existing particle filters with false track discrimination (FTD) which distinguishes between the true tracks and the false tracks using the target existence probability as a track quality measure. To improve the tracking performance of IPF for maneuvering multitarget tracking, we propose an integrated local linearization particle filter (ILLPF) that applies the FTD to LLPF which approximates the optimal importance density with the updated estimates of a bank of tracking filters. The proposed algorithm is extended to accommodate interacting multiple model-linear multitarget-ILLPF (IMM-LM-ILLPF) for maneuvering target tracking with multiple target dynamic models for robust tracking. A study with Monte Carlo simulation demonstrates the improvement of maneuvering multitarget tracking performance in cluttered environments.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将已有的粒子滤波器与以目标存在概率作为航迹质量度量来区分真航迹和假航迹的假航迹判别(FTD)相结合,提出了用于杂波条件下单目标跟踪的综合粒子滤波(IPF)算法。为了提高IPF在机动多目标跟踪中的跟踪性能,我们提出了一种集成的局部线性化粒子滤波器(ILLPF),该滤波器将FTD应用于LLPF,利用一组跟踪滤波器的更新估计值逼近最优重要密度。对该算法进行了扩展,以适应多模型-线性多目标- illpf (IMM-LM-ILLPF)的机动目标跟踪和多目标动态模型的鲁棒跟踪。通过蒙特卡罗仿真研究,验证了该方法对混沌环境下机动多目标跟踪性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Local Linearization Particle Filter for Multiple Maneuvering Target Tracking in Clutter
The integrated particle filter (IPF) algorithm is proposed for single target tracking in clutter that combines the existing particle filters with false track discrimination (FTD) which distinguishes between the true tracks and the false tracks using the target existence probability as a track quality measure. To improve the tracking performance of IPF for maneuvering multitarget tracking, we propose an integrated local linearization particle filter (ILLPF) that applies the FTD to LLPF which approximates the optimal importance density with the updated estimates of a bank of tracking filters. The proposed algorithm is extended to accommodate interacting multiple model-linear multitarget-ILLPF (IMM-LM-ILLPF) for maneuvering target tracking with multiple target dynamic models for robust tracking. A study with Monte Carlo simulation demonstrates the improvement of maneuvering multitarget tracking performance in cluttered environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信