自动呼吸运动跟踪四维计算机断层扫描

I. E. El Naqa, D. Low, J. Deasy, A. Amini, P. Parikh, M. Nystrom
{"title":"自动呼吸运动跟踪四维计算机断层扫描","authors":"I. E. El Naqa, D. Low, J. Deasy, A. Amini, P. Parikh, M. Nystrom","doi":"10.1109/NSSMIC.2003.1352583","DOIUrl":null,"url":null,"abstract":"4D-CT is being developed to provide breathing motion information for radiation therapy treatment planning. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. A major challenge of this process is the determination of the internal motion (trajectories) from the 4D CT data. Manual identification and tracking of internal landmarks is impractical. For example, in a single couch position, 512 /spl times/ 512 /spl times/ 12 pixel CT scans contains 3.1/spl times/10/sup 5/ voxels. If 15 of these scans are acquired throughout the breathing cycle, there are almost 47 million voxels to evaluate necessitating automation of the registration process. The natural high contrast between bronchi, vessels, other lung tissue offers an excellent opportunity to develop automated deformable registration techniques. We have been investigating the use motion compensated temporal smoothing using optical flow for this purpose. Optical flow analysis uses the CT intensity and temporal (in our case tidal volume) gradients to estimate the motion trajectories. The algorithm is applied to 3D image datasets reconstructed at different percentiles of tidal volumes. The trajectories can be used to interpolate CT datasets between tidal volumes.","PeriodicalId":186175,"journal":{"name":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automated breathing motion tracking for 4D computed tomography\",\"authors\":\"I. E. El Naqa, D. Low, J. Deasy, A. Amini, P. Parikh, M. Nystrom\",\"doi\":\"10.1109/NSSMIC.2003.1352583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"4D-CT is being developed to provide breathing motion information for radiation therapy treatment planning. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. A major challenge of this process is the determination of the internal motion (trajectories) from the 4D CT data. Manual identification and tracking of internal landmarks is impractical. For example, in a single couch position, 512 /spl times/ 512 /spl times/ 12 pixel CT scans contains 3.1/spl times/10/sup 5/ voxels. If 15 of these scans are acquired throughout the breathing cycle, there are almost 47 million voxels to evaluate necessitating automation of the registration process. The natural high contrast between bronchi, vessels, other lung tissue offers an excellent opportunity to develop automated deformable registration techniques. We have been investigating the use motion compensated temporal smoothing using optical flow for this purpose. Optical flow analysis uses the CT intensity and temporal (in our case tidal volume) gradients to estimate the motion trajectories. The algorithm is applied to 3D image datasets reconstructed at different percentiles of tidal volumes. The trajectories can be used to interpolate CT datasets between tidal volumes.\",\"PeriodicalId\":186175,\"journal\":{\"name\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2003.1352583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2003.1352583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

4D-CT的发展是为了提供放射治疗计划的呼吸运动信息。潜在的应用包括优化存在呼吸运动的强度调制光束和确定适形治疗的分数内靶体积边界。该过程的一个主要挑战是从4D CT数据中确定内部运动(轨迹)。手动识别和跟踪内部地标是不切实际的。例如,在单个沙发位置,512 /spl次/ 512 /spl次/ 12像素CT扫描包含3.1/spl次/10/sup 5/体素。如果在整个呼吸周期中获得15个这样的扫描,就有近4700万体素来评估必要的自动化注册过程。支气管、血管和其他肺组织之间的自然高对比度为开发自动变形配准技术提供了极好的机会。为此,我们一直在研究使用光流的运动补偿时间平滑。光流分析使用CT强度和时间(在我们的例子中是潮汐体积)梯度来估计运动轨迹。将该算法应用于潮汐量不同百分位数重建的三维图像数据集。这些轨迹可以用来插值潮汐量之间的CT数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated breathing motion tracking for 4D computed tomography
4D-CT is being developed to provide breathing motion information for radiation therapy treatment planning. Potential applications include optimization of intensity-modulated beams in the presence of breathing motion and intra-fraction target volume margin determination for conformal therapy. A major challenge of this process is the determination of the internal motion (trajectories) from the 4D CT data. Manual identification and tracking of internal landmarks is impractical. For example, in a single couch position, 512 /spl times/ 512 /spl times/ 12 pixel CT scans contains 3.1/spl times/10/sup 5/ voxels. If 15 of these scans are acquired throughout the breathing cycle, there are almost 47 million voxels to evaluate necessitating automation of the registration process. The natural high contrast between bronchi, vessels, other lung tissue offers an excellent opportunity to develop automated deformable registration techniques. We have been investigating the use motion compensated temporal smoothing using optical flow for this purpose. Optical flow analysis uses the CT intensity and temporal (in our case tidal volume) gradients to estimate the motion trajectories. The algorithm is applied to 3D image datasets reconstructed at different percentiles of tidal volumes. The trajectories can be used to interpolate CT datasets between tidal volumes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信