学习球在杯子里玩机器人

B. Nemec, Martin Zorko, L. Žlajpah
{"title":"学习球在杯子里玩机器人","authors":"B. Nemec, Martin Zorko, L. Žlajpah","doi":"10.1109/RAAD.2010.5524570","DOIUrl":null,"url":null,"abstract":"In the paper we evaluate two learning methods applied to the ball-in-a-cup game. The first approach is based on imitation learning. The captured trajectory was encoded with Dynamic motion primitives (DMP). The DMP approach allows simple adaptation of the demonstrated trajectory to the robot dynamics. In the second approach, we use reinforcement learning, which allows learning without any previous knowledge of the system or the environment. In contrast to the majority of the previous attempts, we used SASRA learning algorithm. Experimental results for both cases were performed on Mitsubishi PA10 robot arm.","PeriodicalId":104308,"journal":{"name":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Learning of a ball-in-a-cup playing robot\",\"authors\":\"B. Nemec, Martin Zorko, L. Žlajpah\",\"doi\":\"10.1109/RAAD.2010.5524570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we evaluate two learning methods applied to the ball-in-a-cup game. The first approach is based on imitation learning. The captured trajectory was encoded with Dynamic motion primitives (DMP). The DMP approach allows simple adaptation of the demonstrated trajectory to the robot dynamics. In the second approach, we use reinforcement learning, which allows learning without any previous knowledge of the system or the environment. In contrast to the majority of the previous attempts, we used SASRA learning algorithm. Experimental results for both cases were performed on Mitsubishi PA10 robot arm.\",\"PeriodicalId\":104308,\"journal\":{\"name\":\"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAAD.2010.5524570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAD.2010.5524570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们评估了两种应用于杯中球游戏的学习方法。第一种方法是基于模仿学习。捕获的轨迹用动态运动原语(Dynamic motion primitives, DMP)编码。DMP方法允许简单地将演示的轨迹适应机器人动力学。在第二种方法中,我们使用强化学习,它允许在不了解系统或环境的情况下学习。与之前的大多数尝试不同,我们使用了SASRA学习算法。两种情况的实验结果均在三菱PA10机械臂上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning of a ball-in-a-cup playing robot
In the paper we evaluate two learning methods applied to the ball-in-a-cup game. The first approach is based on imitation learning. The captured trajectory was encoded with Dynamic motion primitives (DMP). The DMP approach allows simple adaptation of the demonstrated trajectory to the robot dynamics. In the second approach, we use reinforcement learning, which allows learning without any previous knowledge of the system or the environment. In contrast to the majority of the previous attempts, we used SASRA learning algorithm. Experimental results for both cases were performed on Mitsubishi PA10 robot arm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信