利用重叠差分展开实现高容量可逆数据隐藏

E. Chrysochos, E. E. Varsaki, V. Fotopoulos, A. Skodras
{"title":"利用重叠差分展开实现高容量可逆数据隐藏","authors":"E. Chrysochos, E. E. Varsaki, V. Fotopoulos, A. Skodras","doi":"10.1109/WIAMIS.2009.5031447","DOIUrl":null,"url":null,"abstract":"Difference expansion (DE) has been widely used for reversible data hiding. In this work, a new DE based scheme is presented that uses consecutive, overlapping pairs, instead of the non-overlapping pairs or triads used by traditional DE derivatives. The scheme is superior to the existing approaches, both in capacity and PSNR terms. By applying multiple runs of the embedding process, a significant capacity gain is obtained at the expense of lower quality.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High capacity reversible data hiding using overlapping difference expansion\",\"authors\":\"E. Chrysochos, E. E. Varsaki, V. Fotopoulos, A. Skodras\",\"doi\":\"10.1109/WIAMIS.2009.5031447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Difference expansion (DE) has been widely used for reversible data hiding. In this work, a new DE based scheme is presented that uses consecutive, overlapping pairs, instead of the non-overlapping pairs or triads used by traditional DE derivatives. The scheme is superior to the existing approaches, both in capacity and PSNR terms. By applying multiple runs of the embedding process, a significant capacity gain is obtained at the expense of lower quality.\",\"PeriodicalId\":233839,\"journal\":{\"name\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 10th Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2009.5031447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

差分展开(DE)被广泛应用于可逆数据隐藏。在这项工作中,提出了一种新的基于DE的方案,该方案使用连续的重叠对,而不是传统的DE导数使用的非重叠对或三元组。该方案在容量和PSNR方面都优于现有的方法。通过多次运行嵌入过程,以较低的质量为代价获得了显著的容量增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High capacity reversible data hiding using overlapping difference expansion
Difference expansion (DE) has been widely used for reversible data hiding. In this work, a new DE based scheme is presented that uses consecutive, overlapping pairs, instead of the non-overlapping pairs or triads used by traditional DE derivatives. The scheme is superior to the existing approaches, both in capacity and PSNR terms. By applying multiple runs of the embedding process, a significant capacity gain is obtained at the expense of lower quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信