用细胞神经网络实现信道均衡

A. Özmen, B. Tander
{"title":"用细胞神经网络实现信道均衡","authors":"A. Özmen, B. Tander","doi":"10.1109/MELCON.2010.5476301","DOIUrl":null,"url":null,"abstract":"In this paper, a dynamic neural network structure called Cellular Neural Network (CNN) is employed for the equalization in digital communication. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple CNN containing 9 neurons, thus having only 19 weight coefficients. Proposed system is compared with linear transversal filters as well as with a Multilayer Perceptron (MLP) based equalizer.","PeriodicalId":256057,"journal":{"name":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Channel equalization with cellular neural networks\",\"authors\":\"A. Özmen, B. Tander\",\"doi\":\"10.1109/MELCON.2010.5476301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a dynamic neural network structure called Cellular Neural Network (CNN) is employed for the equalization in digital communication. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple CNN containing 9 neurons, thus having only 19 weight coefficients. Proposed system is compared with linear transversal filters as well as with a Multilayer Perceptron (MLP) based equalizer.\",\"PeriodicalId\":256057,\"journal\":{\"name\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2010.5476301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2010.5476301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用一种动态神经网络结构——细胞神经网络(Cellular neural network, CNN)来实现数字通信中的均衡。结果表明,该非线性系统能够有效抑制码间干扰和信道噪声的影响。该架构是一个包含9个神经元的小型简单CNN,因此只有19个权重系数。将该系统与线性横向滤波器以及基于多层感知器(MLP)的均衡器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Channel equalization with cellular neural networks
In this paper, a dynamic neural network structure called Cellular Neural Network (CNN) is employed for the equalization in digital communication. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple CNN containing 9 neurons, thus having only 19 weight coefficients. Proposed system is compared with linear transversal filters as well as with a Multilayer Perceptron (MLP) based equalizer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信