材料进化:利用材料解决功能优化问题

Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty
{"title":"材料进化:利用材料解决功能优化问题","authors":"Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty","doi":"10.1109/UKCI.2014.6930152","DOIUrl":null,"url":null,"abstract":"Evolution-in-materio (EIM) is a method that uses artificial evolution to exploit properties of materials to solve computational problems without requiring a detailed understanding of such properties. In this paper, we show that using a purpose-built hardware platform called Mecobo, it is possible to evolve voltages and signals applied to physical materials to solve computational problems. We demonstrate for the first time that this methodology can be applied to function optimization. We evaluate the approach on 23 function optimization benchmarks and in some cases results come very close to the global optimum or even surpass those provided by a well-known software-based evolutionary approach. This indicates that EIM has promise and further investigations would be fruitful.","PeriodicalId":315044,"journal":{"name":"2014 14th UK Workshop on Computational Intelligence (UKCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Evolution-in-materio: Solving function optimization problems using materials\",\"authors\":\"Maktuba Mohid, J. Miller, Simon Harding, G. Tufte, O. R. Lykkebø, M. K. Massey, M. Petty\",\"doi\":\"10.1109/UKCI.2014.6930152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolution-in-materio (EIM) is a method that uses artificial evolution to exploit properties of materials to solve computational problems without requiring a detailed understanding of such properties. In this paper, we show that using a purpose-built hardware platform called Mecobo, it is possible to evolve voltages and signals applied to physical materials to solve computational problems. We demonstrate for the first time that this methodology can be applied to function optimization. We evaluate the approach on 23 function optimization benchmarks and in some cases results come very close to the global optimum or even surpass those provided by a well-known software-based evolutionary approach. This indicates that EIM has promise and further investigations would be fruitful.\",\"PeriodicalId\":315044,\"journal\":{\"name\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2014.6930152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2014.6930152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

材料进化(EIM)是一种利用人工进化来利用材料的特性来解决计算问题的方法,而不需要详细了解这些特性。在本文中,我们展示了使用一个名为Mecobo的专用硬件平台,可以进化应用于物理材料的电压和信号来解决计算问题。我们首次证明了这种方法可以应用于函数优化。我们在23个函数优化基准上评估了这种方法,在某些情况下,结果非常接近全局最优,甚至超过了著名的基于软件的进化方法所提供的结果。这表明EIM有前景,进一步的研究将会取得成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution-in-materio: Solving function optimization problems using materials
Evolution-in-materio (EIM) is a method that uses artificial evolution to exploit properties of materials to solve computational problems without requiring a detailed understanding of such properties. In this paper, we show that using a purpose-built hardware platform called Mecobo, it is possible to evolve voltages and signals applied to physical materials to solve computational problems. We demonstrate for the first time that this methodology can be applied to function optimization. We evaluate the approach on 23 function optimization benchmarks and in some cases results come very close to the global optimum or even surpass those provided by a well-known software-based evolutionary approach. This indicates that EIM has promise and further investigations would be fruitful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信