一种多核结构的自适应选择性指令主动推送机制

Jun Zhang, K. Mei, Jizhong Zhao
{"title":"一种多核结构的自适应选择性指令主动推送机制","authors":"Jun Zhang, K. Mei, Jizhong Zhao","doi":"10.1109/NAS.2010.15","DOIUrl":null,"url":null,"abstract":"Correct and effective instruction pre-fetch strategy is key technique to avoid instruction misses. Unfortunately, branch direction correctness and the accuracy of instruction pre-fetch is not very good, and the utilization ratio of memory bandwidth is relative low, all of these mentioned reasons are the main factors leading to instruction miss. This paper proposes an adaptive and selective instruction active push mechanism for multi-core architecture, called ASIAP. On one hand, request number of invalid instruction pre-fetch is decreased and precise instruction pre-fetch is carried on; on the other hand, part of non-sequential type requests are responded preferentially by a specific instruction active push unit adaptively and selectively. Simulation result indicates that, in double-core configuration, relative to three other strategies, Next_Line, Target_Line and Wrong_Path, the accuracy of ASIAP improves average 22.59%, 11.84% and 8.85% respectively. Relative to Next_Line, the reduction of L1 I-Cache miss ranges from 17.7% to 33.5%, average 26.08%.","PeriodicalId":284549,"journal":{"name":"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive and Selective Instruction Active Push Mechanism for Multi-core Architecture\",\"authors\":\"Jun Zhang, K. Mei, Jizhong Zhao\",\"doi\":\"10.1109/NAS.2010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct and effective instruction pre-fetch strategy is key technique to avoid instruction misses. Unfortunately, branch direction correctness and the accuracy of instruction pre-fetch is not very good, and the utilization ratio of memory bandwidth is relative low, all of these mentioned reasons are the main factors leading to instruction miss. This paper proposes an adaptive and selective instruction active push mechanism for multi-core architecture, called ASIAP. On one hand, request number of invalid instruction pre-fetch is decreased and precise instruction pre-fetch is carried on; on the other hand, part of non-sequential type requests are responded preferentially by a specific instruction active push unit adaptively and selectively. Simulation result indicates that, in double-core configuration, relative to three other strategies, Next_Line, Target_Line and Wrong_Path, the accuracy of ASIAP improves average 22.59%, 11.84% and 8.85% respectively. Relative to Next_Line, the reduction of L1 I-Cache miss ranges from 17.7% to 33.5%, average 26.08%.\",\"PeriodicalId\":284549,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAS.2010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Networking, Architecture, and Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAS.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正确有效的指令预取策略是避免指令丢失的关键技术。然而,分支方向的正确性和指令预取的准确性不是很好,内存带宽的利用率相对较低,这些都是导致指令丢失的主要原因。本文提出了一种多核架构的自适应选择性指令主动推送机制,称为ASIAP。一方面减少了无效指令预取请求数,进行了精确的指令预取;另一方面,部分非顺序型请求由特定指令主动推送单元自适应地、选择性地优先响应。仿真结果表明,在双核配置下,相对于Next_Line、Target_Line和Wrong_Path三种策略,ASIAP的准确率平均分别提高了22.59%、11.84%和8.85%。相对于Next_Line, L1 I-Cache缺失减少幅度为17.7% ~ 33.5%,平均为26.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive and Selective Instruction Active Push Mechanism for Multi-core Architecture
Correct and effective instruction pre-fetch strategy is key technique to avoid instruction misses. Unfortunately, branch direction correctness and the accuracy of instruction pre-fetch is not very good, and the utilization ratio of memory bandwidth is relative low, all of these mentioned reasons are the main factors leading to instruction miss. This paper proposes an adaptive and selective instruction active push mechanism for multi-core architecture, called ASIAP. On one hand, request number of invalid instruction pre-fetch is decreased and precise instruction pre-fetch is carried on; on the other hand, part of non-sequential type requests are responded preferentially by a specific instruction active push unit adaptively and selectively. Simulation result indicates that, in double-core configuration, relative to three other strategies, Next_Line, Target_Line and Wrong_Path, the accuracy of ASIAP improves average 22.59%, 11.84% and 8.85% respectively. Relative to Next_Line, the reduction of L1 I-Cache miss ranges from 17.7% to 33.5%, average 26.08%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信